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Abstract—We focus on a fundamental task of detecting meaningful line structures, a.k.a., semantic line, in natural scenes. Many
previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line
detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much
simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the
property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and
propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform
Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we
aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations
in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting
individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient.
Furthermore, our method makes it easy to extract contextual line features that are critical for accurate line detection. In addition to the
proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line
detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method
over previous state-of-the-art alternatives. The dataset and source code is available at https://mmcheng.net/dhtline/.

Index Terms—Semantic line detection, hough transform, CNN, deep learning

1 INTRODUCTION

ETECTING line structures from digital images has a long

history in computer vision. The organization of line
structures is an early yet essential step to transform the
visual signal into useful intermediate concepts for visual
interpretation [2]. Though many techniques have been pro-
posed to detect salient objects [3], [4], [5], [6], [7] and
areas [8], [9], [10], little work has been made for detecting
outstanding/structure-revealing line structures. A recent
study [11] was proposed to detect outstanding straight line
(s), referred to as “semantic line”, that outlines the concep-
tual structure of natural images. Identifying these semantic
lines is of crucial importance for computer graphics and
vision applications, such as photographic composition [12],
[13], structure-preserving image processing [14], [15], image
aesthetic [16], [17], [18], [19], lane detection [20], and artistic
creation [21], [22], [23], [24]. As demonstrated in Fig. 1, Liu
et al. [12] proposed to crop images according to the golden
ratio by using ‘prominent line’. Detecting these ‘semantic
lines” can help to produce images that are visually pleasing
in the photographic composition.
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The Hough transform [25], [26] is one representative
method for line detection, which was first proposed to detect
straight lines in bubble chamber photographs [27]. Since its
simplicity and efficiency, HT is employed to detect lines in dig-
ital images [25], and further extended by [26] to detect other
regular shapes like circles and rectangles. The key idea of the
Hough transform is to vote evidence from the image domain
to the parametric domain, and then detect shapes in the
parametric domain by identifying local-maximal responses. In
the case of line detection, a line in the image domain can be
represented by its parameters, e.g., slope, and offset in the
parametric space. Hough transform collects evidence along
with a line in an image and accumulates evidence to a single
point in the parameter space. Consequently, line detection in
the image domain is converted to the problem of detecting
peak responses in the parametric domain. Classical Hough
transform based line detectors [28], [29], [30], [31] usually
detect continuous straight edges while neglecting the seman-
tics in line structures. Moreover, these methods are sensitive to
light changes and occlusion. Therefore, the results are often
noisy and contain irrelevant lines [32], as shown in Fig. 1d.

Convolutional Neural Networks (CNNs) have achieved
remarkable success in a wide range of computer vision tasks.
Several recent studies [11], [34] have proposed CNN-based
methods for line detection. Concretely, they regard line detec-
tion as a special case of object detection and employ existing
object detectors e.g., faster R-CNN [35] or CornerNet [36], for
line detection. Limited by the ROI pooling and non-maximal
suppression of lines, both [11] and [34] are less efficient in
terms of running time. Moreover, ROI pooling [37] aggregates
features along with a single line, while many recent studies
reveal that richer context information is critical to many tasks,
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Fig. 1. Example pictures from [12] reveal that semantic lines may help in the photographic composition. (a): a photo was taken with an arbitrary pose.
(b): a photo fits the golden ratio principle [21], [33] which is obtained by the method described in[12] using so-called ‘prominent lines’ in the image.
(c): Our detection results are clean and comprise only a few meaningful lines that are potentially helpful in the photographic composition. (d): Line
detection results by the classical line detection algorithms often focus on fine detailed straight edges.

e.g., video classification [38] and semantic segmentation [39].
This point will be validated in Section 6.6, in which we experi-
mentally verify that only aggregating features along a single
line will produces sub-optimal results.

Incorporate powerful CNNs to Hough transform is a
promising direction for semantic line detection. A simple way
of combining CNN with Hough transform is performing
edge detection with a CNN-based edge detector [40], [41] and
then apply standard Hough transform to the edge maps.
However, the two components have diverse optimization tar-
gets, leading to sub-optimal results, as evidenced by our
experiments. In this paper, we propose to incorporate CNN
with Hough transform into an end-to-end manner so that
each component in our proposed method shares the same
optimization target. Our method first extracts pixel-wise rep-
resentations with a CNN-based encoder and then performs
Hough transform on the deep representations to convert rep-
resentations from feature space into parametric space. Then
the global line detection problem is converted to simply
detecting peak response in the transformed features, making
the problem much simpler. For example, the time-consuming
non-maximal suppression (NMS) can be simply replaced by
calculating the centroids of connected areas in the parametric
space, making our method very efficient that can detect lines
in real-time. Moreover, in the detection stage, we use several
convolutional layers on top of the transformed features to
aggregate context-aware features of nearby lines. Conse-
quently, the final decision is made upon not only features of a
single line, but also information about lines nearby. As shown
in Fig. 1c, our method detects clean, meaningful and out-
standing lines, that are helpful to photographic composition.

To better evaluate line detection methods, we introduce a
principled metric to assess the agreement of a detected line
w.r.t. its corresponding ground-truth line. Although [11]
has proposed an evaluation metric that uses intersection
areas to measure the similarity between a pair of lines, this
measurement may lead to ambiguous and misleading
results. And at last, we collect a large scale dataset with
6,500 carefully annotated images for semantic line detection.
The new dataset, namely NKL (short for NanKai Lines),
contains images of diverse scenes, and the scale is much
larger than the existing SEL [11] dataset in both terms of
images and annotated lines.

The contributions of this paper are summarized below:

e We proposed an end-to-end framework for incorpo-
rating the feature learning capacity of CNN with

Hough transform, resulting in an efficient real-time
solution for semantic line detection.

e To facilitate the research of semantic line detection,
we construct a new dataset with 6,500 images, which
is larger and more diverse than a previous SEL
dataset [11].

e We introduce a principled metric that measures the
similarity between two lines. Compared with the previ-
ous IOU based metric [11], our metric has straightfor-
ward interpretation and simplicity in implementation,
as detailed in Section 4.

e Evaluation results on an open benchmark demon-
strate that our method outperforms prior arts with a
significant margin.

A preliminary version of this work was presented in [1]. In

this extended work, we introduce three major improvements:

e We propose a novel “edge-guided refinement” mod-
ule to adjust line positions and obtain better detec-
tion performance with the help of accurate edge
information. This part is detailed in Section 3.5.

e We introduce a new large-scale dataset for semantic
line detection, as presented in Section 5. The new
dataset, namely NKL (short for NanKai Lines), con-
tains 6,500 images in total, and each image is anno-
tated by multiple skilled annotators.

e We employ the maximal bipartite graph match-
ing [42] to match ground-truth and detected lines
during evaluation (Section 6.1). The matching proce-
dure removes redundant true positives so that each
ground-truth line is associated with at most one
detected line and vice versa.

The rest of this paper is organized as follows: Section 2
summarizes the related works. Section 3 elaborates the pro-
posed Deep Hough transform method. Section 4 describes
the proposed evaluating metric, which is used to assess the
similarity between a pair of lines. Section 5 introduces our
newly constructed dataset. Section 6 presents experimental
details and report comparison results. Section 7 makes a
conclusion remark.

2 RELATED WORK

The research of line detection in digital images dates back to
the very early stage of computer vision research. Here, we first
brief the evolution of Hough transform [25] (HT), one of the
most fundamental tools, for line detection. Then we introduce
several recent CNN based methods for line detection. At last,
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we summarize the methods and datasets for semantic line
detection.

2.1 Hough Transform
The Hough transform (HT) was first proposed in [27] for
machine analysis of bubble chamber photographs. It para-
metrizes straight lines with slope-offset, leading to an
unbounded transform space (since the slope can be infinity).
[25] extended HT by using angle-radius rather than slope-
offset parameters, and is conceptually similar to two-dimen-
sional Radom transform [43]. Then Ballard et al. [26] gener-
alized the idea of HT to localize arbitrary shapes, e.g.,
ellipses and circles, from digital images. For example, by
parameterizing with angle and radius, line detection can be
performed by voting edge evidence and finding peak
response in the finite parametric space. Typically, with the
edge detectors such as Canny [44] and Sobel [45], the
detected lines are the maximal local response points in the
transformed parametric space. The core idea of HT is used
in two recent works which parameterize the outputs of
CNNs with offsets and orientations to predict surface
meshes [46] or convex decomposition [47] of 3D shapes.
Despite the success of HT on line detection, it suffers
from high computational costs and unstable performance.
To accelerate the voting of HT, Nahum et al. [31] proposed
the “probabilistic Hough transform” to randomly pick sam-
ple points from a line, while [48] using the gradient direc-
tion of images to decide the voting points. Meanwhile, the
work of [28], [49] employed kernel-based Hough transform
to perform hough voting by using the elliptical-Gaussian
kernel on collinear pixels to boost the original HT. Besides,
John et al. [29], [30] partitioned the input image into hierar-
chical image patches, and then applied HT independently
to these patches. Illingworth et al. [50] use a coarse-to-fine
accumulation and search strategy to identify significant
peaks in the Hough parametric spaces. [51] tackled line
detection within a regularized framework, to suppress the
effect of noise and clutter corresponding to nonlinear image
features. The Hough voting scheme is also used in many
other tasks such as detecting centroid of 3D shapes in point
cloud [52] and finding image correspondence [53].

2.2 Line Segments Detection

Though its robustness and parallelism, Hough transform can-
not be directly used for line segments detection, since it can-
not determine the endpoints of line segments. Probabilistic
Hough transform [31] uses random sampling in the voting
scheme, and reconstructs line segments by localizing the sam-
ple locations. But this method still prefers long straight lines.
In addition to Hough transform, many other studies have
been developed to detect line segments. Burns et al. [2] used
the edge orientation as the guide for line segments extraction.
The main advantage is that the orientation of the gradients
can help to discover low-contrast lines and endpoints. Ete-
madi et al. [54] established a chain from the given edge map
and extracted line segments and orientations by walking over
these chains. Chan et al. [55] used a quantified edge orienta-
tion to search and merge short line segments. Gioi et al. [56]
proposed a linear-time line segment detector (LSD) without
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tuning parameters, and is used by many subsequent stud-
ies [32],[57], [58]

2.3 CNN Based Line Detection
Recently, CNNs have brought remarkable improvements in
computer vision tasks, and also be applied to line detection.
These methods either focus on straight line detection, e.g.,
semantic line detection [11], [59], or line segments detection,
e.g., wireframe parsing [34], [60], [61], [62]. Lee et al. [11] fol-
lowed the two-branch pipeline of faster-RCNN [35] and
proposed a straight line detection framework to find the
meaningful semantic straight line in an image. One branch
verifies the existence of a line and the other branch further
refines the position of the line by regression. Zhang et al.
[34] adopted the conception of CornerNet [36] to extract line
segments as a pair of key points in indoor scenes. Huang
et al. [60] proposed a two-head network to predict lines and
junction points for wireframe parsing. This is extended in
[61] by adding a line proposal sub-network. Zhou et al. [61]
proposed an end-to-end architecture to perform accurate
line segments detection in wireframe parsing.

All these methods extract line-wise feature vectors by Lol
pooling that aggregate deep features solely along each line,
leading to inadequate context information.

2.4 Semantic Line Detection

The meaningful straight line which helps photographic
composition was first discussed in [11], and named as
“semantic line”. [11] regarded semantic line detection as a
special case of object detection. It first extracts CNN repre-
sentations of line proposals using Lol pooling, which bili-
nearly interpolates the features along the entire straight
line. Then the line representations are verified by a classifier
and a regressor, similar to Faster-RCNN [37]. The line pro-
posals are all unique lines in an image. The metric of the
intersection of union (IoU) of two straight lines is proposed
in [11] to evaluate the similarity of two straight lines in an
image. This metric may produce ambiguous definitions in
some scenarios, as will be mentioned in Section 4. Besides,
Lee et al. [11] collected a semantic line detection dataset
which contains about 1,700 outdoor images, and most of
them are natural landscape.

3 APPROACH

In this section, we give the details of the proposed deep
Hough transform for semantic line detection. Our proposed
method mainly contains four components: 1) a CNN encoder
that extracts pixel-wise deep representations; 2) the deep
Hough transform (DHT) that converts the deep representa-
tions from the spatial domain to the parametric domain; 3) a
line detector that is responsible for detecting lines in the
parametric space, and 4) a reverse Hough transform (RHT)
component that converts the detected lines back to image
space. All these components are integrated in an end-to-end
framework that performs forward inference and backward
training within a single step. The pipeline is illustrated
in Fig. 2, and the detailed architecture is shown in the supple-
mentary materials, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3077129.
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Fig. 2. The pipeline of our proposed method. DHT is short for the proposed Deep Hough Transform, and RHT represents the Reverse Hough Trans-
form. CTX means the context-aware line detector which contains multiple convolutional layers.

3.1 Line Parameterization and Reverse

As shown in Fig. 3, given a 2D image ;. € RV, we set
the origin to the center of the image. In the 2D plane, a
straight line / can be parameterized by two parameters: an
orientation parameter 6; € [0,7) representing the angle
between [ and the z-axis and a distance parameter r;, indi-
cating the distance between [ and the origin. Obviously
Vielre|-vVW?2+ H2/2,vVW?2 + H?/2].

Given any line [ on I, we can parameterize it with the
above formulations, and also we can perform a reverse
mapping to translate any valid (r,6) pair to a line instance.
We define the line-to-parameters and the inverse mapping
as

71,0, — P(l)v (1)

l <—P*1(r1,91).
Obviously, both P and P! are bijective mappings. In prac-
tice, r and 0 are quantized to discrete bins to be processed
by computer programs. Suppose the quantization interval
for 7 and 6 are Ar and A6, respectively. Then the quantiza-
tion can be formulated as below:

=[], 6 = % ®)

where 7, and 0, are the quantized line parameters. The num-
ber of quantization levels, denoted with ® and R, are

LY

16

Tl

Fig. 3. Alline can be parameterized by bias r; and slope 6;.

®—z R YW @)

Ar ’

Elx

as shown in Fig. 4a.

3.2 Feature Transformation With Deep Hough
Transform

3.2.1 Deep Hough Transform

Given an input image I, we first extract deep CNN features
X € ROV with the encoder network, where C indicates
the number of channels and / and W are the spatial size.
Afterward, the deep Hough transform (DHT) takes X as
input and produces the transformed features, Y € RE*®*£,
The size of transformed features, O, R, is determined by the
quantization intervals, as described in Eq. (3).

As shown in Fig. 4a, given an arbitrary line / on the
image, we aggregate features of all pixels along I, to (6;,7)
in the parametric space Y’

Y(0r,7) = > X(i), @

1€l

where i is the positional index. 0, and 7, are determined by
the parameters of line /, according to Eq. (1), and then quan-
tized into discrete grids, according to Eq. (2).

Given the number of quantization levels ® and R, we
have ® - R unique line candidates. Then the DHT is applied
to all these candidate lines and their respective features are
aggregated to the corresponding position in Y. It is worth
noting that DHT is order-agnostic in both the feature space
and the parametric space, making it highly parallelizable.

3.2.2 Multi-Scale DHT With FPN

Our proposed DHT could be easily applied to arbitrary spa-
tial features. We use the feature pyramid network (FPN) [63]
as our encoder. FPN can help to extract multi-scale and rich
semantic features.

Specifically, the FPN outputs 4 feature maps X, Xo, X3, X4
and their respective resolutions are 1/4, 1/8, 1/16, 1/16 of the
input resolution. Then each feature map is transformed by a
DHT module independently, as shown in Fig. 2. Since these
feature maps are in different resolutions, the transformed fea-
tures Y1, Y3, Y3, Yy also have different sizes, because we use the
same quantization interval in all stages (see Eq. (3) for details).
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Fig. 4. (a): Features along a line in the feature space (blue, left) are accumulated to a point (#;, ;) in the parametric space (red, right). (b): lllustration
of the proposed context-aware feature aggregation. Features of nearby lines in the feature space (left) are translated into neighbor points in the
parametric space (right). In the parametric space, a simple 3 x 3 convolutional operation can easily capture contextual information for the central line

(orange). Best viewed in color.

To fuse transformed features together, we interpolate Y5, Y3, Y,
to the size of Y}, and then fuse them by concatenation.

3.3 Line Detection in the Parametric Space
3.3.1 Context-Aware Line Detector

After the deep Hough transform (DHT), features are trans-
lated to the parametric space where grid location (6,) cor-
responds to features along an entire line [ = P~!(0,r) in the
feature space. An important reason to transform the fea-
tures into the parametric space is that the line structures
could be more compactly represented. As shown in Fig. 4b,
lines nearby a specific line [ are translated to surrounding
points near (6;,7;). Consequently, features of nearby lines
can be efficiently aggregated using convolutional layers in
the parametric space.

In each stage of the FPN, we use two 3 x 3 convolutional
layers to aggregate contextual line features. Then we inter-
polate features to match the resolution of features from dif-
ferent stages, as illustrated in Fig. 2, and concatenate the
interpolated features together. Finally, a 1 x 1 convolutional
layer is applied to the concatenated feature maps to produce
pointwise predictions.

3.3.2 Loss Function

Since the prediction is directly produced in the parametric
space, we calculate the loss in the same space as well. For a
training image I, the ground-truth lines are first converted
into the parametric space with the standard Hough trans-
form. Then to help converging faster, we smooth and
expand the ground-truth with a Gaussian kernel. Similar
tricks have been used in many other tasks like crowed
counting [64], [65] and road segmentation [66]. Formally, let
G be the binary ground-truth map in the parametric space,
G, ; = lindicates there is a line located at ¢, j in the paramet-
ric space. The expanded ground-truth map is

G = GK,

where K is a 5 x 5 Gaussian kernel and denotes the convo-
lution operation. An example pair of smoothed ground-
truth and the predicted map is shown in Fig. 2.

In the end, we compute the cross-entropy between the
smoothed ground-truth and the predicted map in the
parametric space

L:_Z{éi'log(Pi)"‘(l_éi)'log(l_Pi)}. ©

i

3.4 Reverse Mapping

Our detector produces predictions in the parametric space
representing the probability of the existence of lines. The
predicted map is then binarized with a threshold (e.g., 0.01).
Then we find each connected area and calculate respective
centroids. These centroids are regarded as the parameters
of detected lines. At last, all lines are mapped back to the
image space with P~!(-), as formulated in Eq. (1). We refer
to the “mapping back” step as “Reverse Mapping of Hough
Transform (RHT)”, as shown in Fig. 2.

3.5 Edge-Guided Line Refinement

Semantic lines are outstanding structures that separate dif-
ferent regions in a scene. Therefore, edges may serve as
indicators for semantic lines. We propose to refine the detec-
tion results by aligning line positions using edge informa-
tion. First, we compute an edge map E using HED [41].
Afterward, given a detected line [, the edge density of [ is
defined as the average edge response along [

B
plt) == ©®

where |{| is the number of pixels on I. For the sake of stabil-
ity, we widen [ by 1 pixel on both sides (totally the width is
3) when dealing with Eq. (6).

Let £ be a set of lines that are close to . These lines are
obtained by moving the end-points of [ by §, pixels clock-
wise and anti-clockwise. Since there are two end-points and
each one has §, + 1 possible locations, the size of the set is
||£]| = (8, +1)*. Then the refinement can be achieved by
finding the optimal line I* from £ that holds the highest
edge density

I" = arg max p(1). ()
leL

The performance of “edge-guided line refinement” with dif-

ferent §, is recorded in Section 6.6.2.

4 THE PROPOSED EVALUATION METRIC

In this section, we elaborate on the proposed evaluation
metric that measures the agreement, or alternatively, the
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IOU(m,n)=0.66
I0U(p,q)=0.95
(a) (b)

I0U(red)=0.53
IOU(blue)=0.46
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S(m,n)=0.24
S(p,q)=0.34
(© (d)

§,4=0.54, Sy=0.02
S=0.00

Fig. 5. (a): Two pairs of lines with similar relative position could have very different IOU scores. (b): Even humans cannot determine which area (blue
or red) should be considered as the intersection in the I0U-based metric [11]. (c) and (d): Our proposed metric considers both euclidean distance
and angular distance between a pair of lines, resulting in consistent and reasonable scores. Best viewed in color.

similarity between the two lines in an image. First, we
review several widely used metrics in the computer vision
community and then explain why these existing metrics are
not proper for our task. Finally, we introduce our newly
proposed metric, which measures the agreement between
two lines considering both euclidean distance and angular
distance.

4.1 Review of Existing Metrics

The intersection over union (IOU) is widely used in object
detection, semantic segmentation and many other tasks to
measure the agreement between detected bounding boxes
(segments) w.r.t the ground-truth. Lee et al. [11] adopt the
original IOU into line detection, and propose the line-based
IOU to evaluate the quality of detected lines. Concretely,
the similarity between the two lines is measured by the
intersection areas of lines divided by the image area.
Take Fig. 5a as an example, the similarity between line m
and n is IOU(m,n) = area(red)/area(I).

However, we argue that this IOU-based metric is improper
and may lead to unreasonable or ambiguous results under
specific circumstances. As illustrated in Fig. 5a, two pairs of
lines (m, n, and p, q) with similar structures could have very
different IOU scores. In Fig. 5b, even humans cannot deter-
mine which areas (red or blue) should be used as intersection
areas in line based IOU.

There are other metrics, e.g., the Earth Mover’s Distance
(EMD) [67] and the Chamfer distance (CD) [68], that can be
used to measure line similarities. However, these metrics
require to rasterize the lines into pixels and then calculate
pixel-wise distances, which is less efficient.

To remedy the deficiencies, we propose a simple yet
effective metric that measures the similarity of two lines in
the parametric space. Our proposed metric is much more
efficient than EMD and CD. Quantitative comparisons in
Section 6.4 demonstrate that our proposed metric presents
very similar results to EMD and CD.

4.2 The Proposed Metric

Our proposed metric, termed EA-score, considers both
Euclidean distance and Angular distance between a pair of
lines. Let [;,[; be a pair of lines to be measured, the angular
distance Sy is defined according to the angle between two
lines

8,1

=1
89 7_[/2 )

(®)

where 60(l;, ;) is the angle between [; and [;. The euclidean
distance is defined as

Si=1-D(l;,1;), )

where D(l;,1;) is the euclidean distance between midpoints
of l; and [;. Note that we normalize the image into a unit
square before calculating D(l;,;). Examples of S; and Sy
can be found in Figs. 5¢ and 5d. Finally, our proposed EA-
score is
S=(Ss-84)° (10)
Eq. (10) is squared to make it more sensitive and discrimi-
native when the values are high.
Several example line pairs and corresponding EA-scores
are demonstrated in Fig. 6.

5 NKL: A SEMANTIC LINE DETECTION DATASET

To the best of our knowledge, there is only one dataset,
SEL [11], specifically for semantic line detection. SEL con-
tains 1,715 images of which 175 images for testing and
others for training. To fulfill the gap between large CNN-
based models and the scale of the existing dataset, we col-
lect a new dataset for semantic line detection.

The new dataset, namely NKL (short for NanKai Lines),
contains 6,500 images that present richer diversity in terms of
both scenes and the number of lines. Each image of NKL is
annotated by multiple skilled human annotators to ensure the
annotation quality. The dataset is open available on our project
page. Example images and annotations are shown in Fig. 7.

5.1 Data Collection and Annotation

All the images of NKL are crawled from the internet using
specific keywords such as sea, grassland ef al. After copy-
right checking, we carefully filter out images with at least
one semantic line. Since the annotation of semantic lines is
subjective and depends on annotators, each image is first
annotated by 3 knowledgeable human annotators and veri-
fied by others. A line is regarded as positive only if all of the
3 annotators are consistent. Then the inconsistent lines are
reviewed by two other annotators. In a word, for each line,
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S=01

S=0.3

Fig. 6. Example lines with various EA-scores (S in Eq. (10)). The larger the EA-score is, the more similar the lines are.

there are at least 3 and at most 5 annotators, and a line is
regarded as positive only if the line is marked as positive by
more than 3 annotators.

5.2 Dataset Statistics
5.2.1  Number of Images and Semantic Lines

There are totally 13,148 semantic lines in NKL and 2,791
semantic lines in SEL [11] dataset over all images. Table 1
summarizes the number of images and lines of the two
datasets, respectively.

Fig. 8 summarizes the histogram of the per-image num-
ber of lines in NKL and SEL [11] datasets. More than half
(67 percent, 4,356/6,500) of the images in NKL dataset con-
tain more than 1 semantic line, while the percentage of SEL
is only 45.5 percent.

5.2.2 Diversity Analysis

To analyze the diversity of SEL and NKL datasets, we feed
all the images into a ResNet50 [69] network that is pre-
trained on the Place365 [70], and then collect the outputs as
category labels. The results are presented in Fig. 9.

There are totally 365 categories in Place365 [70] dataset,
among which we got 167 unique category labels on SEL
dataset and 327 on NKL. Besides, as shown in Fig. 9, scene
labels on NKL dataset are more fairly distributed compared
to SEL dataset. For example, in SEL dataset, top-3 populated
categories (sky, field, desert) make up more than a quarter
of the total. While in NKL, top-3 makes up less than one-
fifth of the total.

6 EXPERIMENTS

In this section, we introduce the implementation details of
our system, and report experimental results compared with
existing methods.

6.1 Implementation Details
Our system is implemented with the PyTorch [71] frame-
work, and a Jittor [72] implementation is also available.

TABLE 1
Number of Images and Lines in SEL [11] and NKL
Dataset Total #images, Training #images, Evaluation
#lines #lines #images, #lines
SEL [11]  1,715,2,791 1,541, 2,493 175,298
NKL 6,500, 13,148 5,200, 10,498 1,300, 2,650
(Ours)

S=05

4799

S=07

Since the proposed deep Hough transform (DHT) is highly
parallelizable, we implement DHT with native CUDA pro-
gramming, and all other parts are implemented based on
framework level Python APL. We use a single RTX 2080 Ti
GPU for all experiments.

6.1.1 Network Architectures

We use two representative network architectures, ResNet50
[69] and VGGNet16 [73], as our backbone and the FPN [63] to
extract multi-scale deep representations. For the ResNet net-
work, following the common practice in previous works [74],
[75], [76], the dilated convolution [77] is used in the last layer
to increase the resolution of feature maps.

6.1.2 Hyper-Parameters

The size of the Gaussian kernel used in Section 3.3.2is 5 x 5.
All images are resized to (400, 400) and then wrapped into a
mini-batch of 8. We train all models for 30 epochs using
Adam optimizer [78] without weight decay. The learning
rate and momentum are set to 2 x 10~* and 0.9, respectively.
The quantization intervals A6, Ar will be detailed in Sec-
tion 6.3 and Eq. (12).

6.1.3 Datasets and Data Augmentation

Our experiments are conducted on the SEL [11] dataset and
our Proposed NKL dataset. The Statistics of the two datasets
are detailed in Section 5. Following the setup in [11], we use
only left-right flip data augmentation in all our experiments.

6.2 Evaluation Protocol

We measure the quality of detection lines in terms of preci-
sion, recall and F-measure. The first step is to match the
detected lines and ground-truth lines.

Let P and G be the sets of predicted lines and ground-
truth lines, respectively. p; and g; are individual predicted
and ground-truth line. We first match the lines in P and G
based on bipartite matching. Suppose G ={V,E} be a
bipartite graph.! The vertice set V can be divided into two
disjoint and independent sets, in our case, P and G

V=PUg
PNG=0.

Each edge in E denotes the similarity between a pair of
lines under a certain similarity measure. Apart from the

1. https:/ /en.wikipedia.org/wiki/Bipartite_graph
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Fig. 7. Example images and annotations (yellow lines) of NKL. Images of NKL present diverse scenes and rich line annotations.

proposed EA-score, we also use two other popular metrics:
the earth mover’s distance (EMD) [67] and the Chamfer dis-
tance (CD) [68], as described in Section 4. Note that we nor-
malize both EMD and chamfer distance by their maximal
possible value to bound the value within [0, 1] (for both EMD
and Chamfer distance, the maximal distance occurs when
two lines shrinkage to two points on the opposite diagonals).

Given the graph G = {V, E}, a matching in a Bipartite
Graph is a set of the edges chosen in such a way that no two
edges share a common vertice. In our task, given the set of
predicted lines P and the set of ground-truth lines G, we
seek to find a matching so that each ground-truth line g; cor-
responds to no more than one detected line p; and vice
versa. This problem, maximum matching of a bipartite
graph, can be easily solved using the classical Hungarian
method [42] with polynomial time complexity.

After matching P and G, we can calculate true positive
(TP), false positive (FP) and false negative (FN) accordingly.
Asillustrated in Fig. 10, predicted lines (p;, p») that are paired
with ground-truth lines (g2, g1) are considered as true posi-
tive. Predicted line (p3) that is not matched with any ground-
truth line is a false positive, and ground-truth line (g3) without
a corresponding predicted line is a false negative.

Finally, the Precision, Recall, and F-measure are

TP TP _ 2PR an
~TP+FP'  TP+FN' = P+R
We apply a series thresholds 7 = 0.01,0.02,...,0.99 to pre-

diction & ground-truth pairs. Accordingly, we derive a
series of precision, recall, and F-measure scores. Finally, we

" 0.60 - 0\0
g B NKL (Ours)
© B SEL[11]
€ 0.40 -
© olo
1S
Q
1]
6
— 0 20 -
(] 0\0
Q
Al 6 \° °"l° Q\M I\
< 0.01- iﬂ. N o of
7 8

Fig. 8. Histogram chart of number of lines. Lines of our dataset are more
fairly distributed compared to SEL.

evaluate the performance in terms of average precision,
recall, and F-measure. We use EMD [67], CD [68], and our
proposed EA metric for quantitative comparisons. In the
ablation study, we only use EA metric for simplicity.

6.3 Tuning the Quantization Intervals

The quantization intervals A6 and Ar in Eq. (2) are impor-
tant factors to the performance and running efficiency.
Larger intervals lead to fewer quantization levels, i.e., ©
and R, and the model will be faster. With smaller intervals,
there will be more quantization levels, and the computa-
tional overhead is heavier.

We perform a coordinate descent on SEL [11] dataset to
find proper intervals that are computationally efficient and
functionally effective. Note that we use the EA-score as line
similarity measure since its simplicity. In the first round, we
fix the angular quantization interval to A8 = /100 and then
search for Ar, the results are shown in Fig. 11a. According
to Fig. 11a, the performance first rises slowly and then drops
down with the decrease of Ar, and the turning point is near
Ar = /2. In the second round, we fix Ar = /2 and train
with different A¢. Similar to Fig. 11a, the results in Fig. 11b
demonstrate that the performance first increases smoothly
with the drop of Ag, and then quickly decreases with vibra-
tion. Therefore, the turning point A = 7/100 is a proper
choice for angular quantization.

In summary, we use A9 = /100 and Ar = /2 in quanti-
zation, and corresponding quantization levels are

2 2
0= 100, n= [T

where H, W are the size of feature maps to be transformed
in DHT.

(12)

6.4 Quantitative Comparisons

We compare our proposed method with the SLNet [11] and
the classical Hough line detection [25] with HED [41] as the
edge detector. Note that we train the HED edge detector on
the SEL [11] training set using the line annotations as edge
ground-truth.

6.4.1 Results on SEL Dataset

Table 2 summarizes the results on the SEL dataset [11]. With
either VGG16 or ResNet50 as the backbone, Our proposed
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Fig. 9. Category distribution of SEL (a) and NKL (b) datasets. Category labels are obtained through a Places365 pretrained model. There are 327
(totally 365) scene labels presented in NKL dataset, in contrast to 167 in SEL dataset. The labels of NKL are also more fairly distributed compared to

that of SEL.
P1 P2 D3 P4
(
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P2 g — —
P3
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o
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(©)
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Fig. 10. lllustration of the bipartite graph matching in evaluation. (a) An example image with 3 ground-truth lines (g1, ¢2, g3) and 4 predictions
(p1, 2, p3, p4)- (b) the corresponding bipartite graph. The edge between a pair of nodes represents the similarity (S in Eq. (10)) between lines. (c) after
maximum matching of a bipartite graph, each node in a subgraph is connected with no more than 1 node from the other subgraph. (d) true positive

(TP), false positive (FP) and false negative (FN).

method consistently outperforms SLNet and HT+HED with
a considerable margin. In addition to Table 2, we plot the F-
measure versus threshold and the precision versus recall
curves. Fig. 12 reveals that our method achieves higher F-
measure than others under a wide range of thresholds.

6.4.2 Results on the NKL Dataset

We report the performance of our newly constructed NKL
dataset. Since SLNet [11] did not release the training code, we
only compare our method with HED+HT. As shown in Table 2,

fixed AB

F-measure

xV/2

our proposed method outperforms the baseline method (HED
edge detector + Hough transform) with a clear margin. Some
detection results of our method are presented in Fig. 14.

6.4.3 Runtime Efficiency

In this section, we benchmark the runtime of different meth-
ods including SLNet [11] with various iteration steps, classi-
cal Hough transform and our proposed method.

Both SLNet [11] and HT require HED [41] edge detector as
a preprocessing step. The non-maximal suppression (NMS) in

fixed Ar

0.80 1

o 0.75+

i 0.65 -

0.60 1

0.55 ; ;
0.02 0.01

NG

0.04 0.03

X7

Fig. 11. Left: performance under different distance quantization intervals Ar with a fixed angular quantization interval A9 = 7/100. Larger Ar indicates
less quantization levels R. Right: performance under different angular quantization intervals A with a fixed distance quantization interval Ar = /2.
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TABLE 2
Quantitative Comparisons on the SEL [11] and NKL Dataset
Dataset Method CD EMD EA
Avg. P Avg. R Avg.F AvgP AvgR AvgF AvgP AvgR AvgF
SEL [11] HED [41] + HT [25] 0.491 0.578 0.531 0.461 0.543 0.498 0.356 0.420 0.385
SLNet-iter1 [11] 0.740 0.905 0.812 0.723 0.888 0.797 0.654 0.803 0.721
SLNet-iter5 [11] 0.826 0.841 0.834 0.810 0.824 0.817 0.735 0.747 0.741
SLNet-iter10 [11] 0.858 0.821 0.839 0.840 0.804 0.822 0.762 0.729 0.745
Ours (VGG16) 0.841 0.835 0.838 0.830 0.824 0.827 0.756 0.774 0.765
Ours (ResNet50) 0.886 0.815 0.849 0.878 0.807 0.841 0.819 0.755 0.786
NKL HED [41] + HT [25] 0.301 0.878 0.448 - - - 0.213 0.622 0.318
Ours (VGG16) 0.750 0.864 0.803 0.726 0.837 0.778 0.659 0.759 0.706
Ours (ResNet50) 0.766 0.864 0.812 0.743 0.839 0.789 0.679 0.766 0.719

On SEL [11] dataset, our method (without ER) significantly outperforms other competitors in terms of average F-measure. ‘CD,” 'EMD,” and ‘EA’ are different
evaluation metrics described in Section 4.

SLNet requires edge maps as guidance, and the classical
Hough transform takes an edge map as input. Moreover,
SLNet uses a refining network to enhance the results itera-
tively. Therefore, the inference speed is related to the iteration
steps. In contrast, our method produces output results with a
single forward pass, and the NMS is as simple as computing
the centroids of each connected area in the parametric space.
Results in Table 3 illustrate that our method is significantly
faster than all other competitors with a very considerable
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margin. Even with only 1 iteration step, SLNet is still slower
than our method.

6.5 Qualitative Comparisons
Here we give several example results of our proposed
method along with SNLet and HED+HT. As shown
in Fig. 13, compared with other methods, our results are
more compatible with the ground-truth as well as human
cognition. In addition to the results in Fig. 13, we provide

PR curves

Precision
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Fig. 12. Left: F-measure under various thresholds. Right: The precision-recall curve. Out method outperforms SLNet [11] and classical Hough trans-
form [25] with a considerable margin. Moreover, even with 10 rounds of location refinement, SLNet still presents inferior performance.

TABLE 3
Quantitative Speed Comparisons
Method Network forward NMS Edge Total
SLNet-iter1 [11] 0.354 s 0.079 s 0.014 s 0.447 s
SLNet-iter3 [11] 0.437 s 0.071s 0.014 s 0.522's
SLNet-iter10 [11] 0.827 s 0.068 s 0.014 s 0.909 s
HED [41] + HT [25] 0.014 s 0.117 s 0.024 s 0.155s
Ours (VGG16) 0.03's 0.003 s 0 0.033 s
Ours (ResNet50) 0.017 s 0.003 s 0 0.020 s

Our method (without ER) is much faster than the other two competitors in network forward. Furthermore, our method doesn’t require
any extra-process e.g., edge detection. As a result, our method can run at 49 FPS, which is remarkably higher than the other two
methods.
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Fig. 13. Example detection results of different methods on the SEL dataset. Compared to SLNet [11] and classical Hough transform [25], our results
are more consistent with the ground-truth.

all the detection results of our method and SLNet in the sup- 6.6.1 Components in DHT

plementary materials, available online. We first ablate components of “deep Hough transform”.
Specifically, they are: (a) the Deep Hough transform (DHT)
module detailed in Section 3.2; (b) the multi-scale (MS)

6.6 Ablation Study DHT architecture described in Section 3.2.2; (c) the context-
In this section, we ablate each of the components in our aware (CTX) line detector proposed in Section 3.3.1. Experi-
method. mental results are shown in Table 4.

Fig. 14. Detection results of our method on the NKL dataset. Our method produces results that are visually compatible with human perception.
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TABLE 4
Ablation Study for Each Component
DHT MS CTX F-measure
v 0.664
v v 0.758
v v 0.771
v Vv v 0.786

MS indicates DHTs with multi-scale features as described in Section 3.2.2,
and CTX means context-aware aggregation as described in Section 3.3.1.

TABLE 5
Performance DHT+ER With Different 6,
8y Precision Recall F-measure
0 0.8190 0.7530 0.7861
1 0.8199 0.7561 0.7866
3 0.8208 0.7569 0.7874
5 0.8214 0.7574 0.7880
7 0.8213 0.7573 0.7878
9 0.8212 0.7571 0.7877

Models are trained/tested on the SEL dataset using the Resnet50 backbone.
8, = 0 represents with vanilla DHT method without ER.

We first construct a baseline model with plain ResNet50
and DHT module. Then we verify the effectiveness of the
multi-scale (MS) strategy and context-aware line detector
(CTX), individually. We separately append MS and CTX to
the baseline model and then evaluate their performance,
respectively. Results in Table 4 indicate that both MS and
CTX can improve the performance of the baseline model.

At last, we combine all the components to form our final
full method, which achieves the best performance among
all other combinations. Experimental results in this section
clearly demonstrate that each component of our proposed
method contributes to the success of our method.

6.6.2 Edge-Guided Refinement

Here we ablate the “Edge-guided Refinement” module
(abbreviated as ER). First, we test the performance of DHT
+ER using different §,. The 8, parameter controls the size of
the searching space in ER (£ in Eq. (7)). This experiment is
conducted on the SEL dataset using the ResNet50 backbone.

TABLE 6
Performance With and Without ER (5, = 5) Using
Different Backbones and Datasets

Dataset Arch Edge P R F F@0.95

SEL [11]  VGG16 0.756 0.774 0.765 0.380
VGG16 v 0.758 0.777 0.770 0.439
Resnet50 0.819 0.753 0.786 0.420
Resnet50 v 0.821 0.757 0.788 0.461

NKL VGGl16 0.659 0.759 0.706 0.434
VGG16 v 0.664 0765 0711 0.472
Resnet50 0.679 0.766 0.719  0.459
Resnet50 v 0.684 0771 0.725 0.486

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Results in Table 5 tells that the performance first increases
and then gets saturated with the growth of §,. Since the peak
performance occurs when §, = 5, we set §, = 5 for better per-
formance. After setting §, to 5, we compare the performance
of our method with and without ER, using different back-
bones and datasets.

Results in Table 6 clearly demonstrate that edge-guided
refinement can effectively improve detection results regard-
less of backbone architectures and datasets.

7 CONCLUSION

In this paper, we proposed a simple yet effective method for
semantic line detection in natural scenes. By incorporating
the strong learning ability of CNNs into classical Hough
transform, our method is able to capture complex textures
and rich contextual semantics of lines. To better assess the
similarity between a pair of lines, we designed a new evalu-
ation metric considering both euclidean distance and angu-
lar distance between lines. Besides, a new dataset for
semantic line detection was constructed to fulfill the gap
between the scale of existing datasets and the complexity of
modern CNN models. Both quantitative and qualitative
results revealed that our method significantly outperforms
previous arts in terms of both detection quality and speed.
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