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a b s t r a c t 

With the development of IoT and mobile devices, cross-device palmprint recognition is becoming an 

emerging research topic in multimedia for its great application potential. Due to the diverse character- 

istics of different devices, e.g. resolution or artifacts caused by post-processing, cross-device palmprint 

recognition remains a challenging problem. In this paper, we make efforts to improve cross-device palm- 

print recognition in two aspects: (1) we put forward a novel distribution-based loss to narrow the repre- 

sentation gap across devices, and (2) we establish a new cross-device benchmark based on existing palm- 

print recognition datasets. Different from many recent studies that only utilize instance-level or pairwise- 

level information between devices, the proposed progressive target distribution loss (PTD loss) uses the 

distributional information. Moreover, we establish a progressive target mechanism that will be dynamically 

updated during training, making the optimization easier and smoother. The newly established bench- 

mark contains more samples and more types of IoT devices than previous benchmarks, which can facil- 

itate cross-device palmprint research. Extensive comparisons on several benchmarks reveal that: (1) our 

method outperforms other cross-device biometric recognition approaches significantly; (2) our method 

presents superior performance compared to SOTA competitors on several general palmprint recognition 

benchmarks; Code and data are openly available at https://kaizhao.net/palmprint . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, the palm payment device being developed by Ama- 

on [1] has attracted people’s attention. Compared with card pay- 

ents, palm payments will significantly reduce the waiting time 

nd bring great convenience to people. And the safety of the palm- 

rint recognition system has been confirmed by numerous previ- 

us studies [2] . A successful palm payment system will revolution- 

ze the way we do our shopping and significantly impact our daily 

ife in the coming years. 

During the last decade, palmprint recognition has switched 

rom early contact and restricted images to unrestricted contactless 

mages. And recently, some studies deal with images taken by mo- 

ile phones, such as MPD [3] and XJTU-UP [4] . However, besides 

martphones, the devices used in payment application scenarios 

re diverse and include various IoT devices, such as the aforemen- 

ioned AmazonOne [1] . Cross-device registration and identification 

mprove payment convenience more effectively. For instance, cus- 

omers can use their smartphones to register at home and use IoT 
∗ Corresponding author. 
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evices to complete identification and payment at stores. Yet, the 

eterogeneous visual characteristics between images across devices 

ose a huge challenge. Existing methods, such as ArcPalm [3] , do 

ot take into account the situation of domain shift, which leads to 

heir poor performance in cross-device recognition scenarios. 

As shown in Fig. 1 (a) and (b), pictures taken by different 

evices vary greatly in appearance. Consequently, as illustrated in 

ig. 1 (c), though belonging to the same identity, images from dif- 

erent devices present large intra-class variance in the embedding 

pace. This will largely affect the recognition performance on un- 

een data. To alleviate this problem, we propose a novel loss func- 

ion, namely Progressive Target Distribution loss (PTD loss), that 

inimizes the distributional gap between cross-device and within- 

evice similarities. Specifically, we estimate the histogram of simi- 

arity scores and minimize the distributional distance between the 

stimated histogram and target distribution. Our innovation is re- 

ected in our proposed ‘progress target’. Instead of setting up a 

xed target, we propose the ‘progressive target’ that adjusts to 

ach individual mini-batch. 

Additionally, there are not sufficient datasets for cross-device 

GB palmprint recognition. We collect a new cross-device palm- 

rint recognition benchmark based on existing palmprint recogni- 

ion datasets. The newly collected dataset consists of RGB images 

https://doi.org/10.1016/j.patcog.2022.108942
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108942&domain=pdf
https://kaizhao.net/palmprint
mailto:kz@kaizhao.net
https://doi.org/10.1016/j.patcog.2022.108942
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Fig. 1. Top: Images taken by mobile phones (a) and IoT devices(b) are diverse in appearance. Bottom: TSNE of palm features extracted by ArcPalm [3] (c) and our proposed 

method (d). Our method can shorten the distance between samples of the same identity but different devices, e.g. A Mobile and A IoT . 
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rom different devices, e.g. IoT devices, and mobile phones, and it is 

arger than existing datasets. The main contributions of this work 

re summarized below. 

• We propose a novel and simple loss term to narrow the cross- 

device gap at the pairwise level. we propose to use a ‘progres- 

sive target’ to guide the estimated histogram. 
• We established a new cross-device palmprint benchmark to 

improve the study of cross-device RGB palmprint recognition 

based on existing datasets. 
• Extensive experiments on the newly collected dataset and sev- 

eral existing palmprint recognition datasets verified the effec- 

tiveness of the proposed method. 

We also tested the proposed method on cross-device person re- 

dentification and the results are also in favor of our method. 

The remaining of this paper is organized as follows. In 

ection 2 , related studies are reviewed. Section 3 states the details 

f the proposed PTD loss. Experimental results and dataset details 

re presented in Section 4 . Finally, Section 5 concludes the paper. 

. Related work 

.1. Traditional palmprint recognition methods 

Traditional palmprint recognition methods can be roughly di- 

ided into two categories: (1) holistic-based and (2) local descrip- 

or based. In holistic-based methods, features are extracted from 

he whole image and then projected to a lattent space of lower- 

imensional to make it more compact and discriminative. Super- 

ised and unsupervised projection methods such as Principle Com- 

onent Analysis (PCA) [5] , Independent Component Analysis (ICA) 
2 
6] , Mix Factor Analysis (MFA) [7] , and Linear Discriminant Analy- 

is (LDA) [8] are used for dimension reduction. Gui et al. [9] use 

ocality Preserving Projection (LPP) to preserve local structures of 

almprints. Hu et al. [10] extend LPP to 2D-LPP. Holistic-based 

ethods often suffer from degradation caused by distortion, illu- 

ination, and noise. To overcome these issues, some studies try 

o transform the data from image domain to another domain. Fre- 

uency [11] and Cosine [12] transforms are commonly used to 

vercome these degradations. 

Local descriptor based methods extract local features of the im- 

ge and then construct a global description by feature fusion. The 

oding-based methods have the advantages of small storage space 

nd fast processing speed, but the accuracy is slightly inferior. Ear- 

ier in [13] , Zhang et al. designed the classic competitive code 

CompCode) by using multiple 2-D Gabor filters to extract orien- 

ation information. FastCompCode [14] proposes a binary code for 

ffective representation and matching. Li et al. [15] extract the lo- 

al micro-structure tetra patterns. Jia et al. [16] propose the robust 

ine orientation code (RLOC) [16] . Wu et al. [17] extract local SIFT 

eatures and match palm images with RANSAC. Qian et al. [18] ex- 

ract histogram of orientations. 

.2. Deep learning for palmprint recognition. 

Many recent studies use deep learning as feature extrac- 

or for palmprint recognition. In general, these deep learn- 

ng based methods belong to holistic-based palmprint recogni- 

ion. Dian et al. [19] first use the AlexNet as the feature ex- 

ractor and match palm images with Hausdorff distance. Svo- 

oda et al. [20] propose a new loss function related to the d- 
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Fig. 2. Overall framework of the target distribution loss. During training, each mini-batch contains M IDs, and each ID contains N samples. Colors (red and blue) represent 

embeddings of different devices and shapes represent different identities. 
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rime index. Shao et al. [21] use deep metric learning to obtain 

iscriminative features. Zhao et al. [22] design a novel CNN archi- 

ecture for generic palmprint recognition in numerous scenarios. 

ecently, margin-based loss functions have been proven to be ef- 

ective for face recognition. The large margin loss [23] and additive 

ngular margin loss [3] are introduced to palmprint recognition. 

ei et al. [24] propose a compact CNN-based surface representation 

or 3D palmprint recognition. Different from these studies that in- 

roduce new architectures or loss functions, our proposed method 

ocuses on synthesizing training data for deep palmprint recogni- 

ion. 

. Proposed method 

As mentioned before, the heterogeneous visual characteristics 

xisting between cross-device images pose a huge challenge. Ac- 

ording to Fig. 1 , the selected baseline ArcPalm [3] performs 

oorly in cross-device recognition scenarios. To solve the domain 

hift problem caused by heterogeneous image characteristics, we 

ropose a PTD loss based on the baseline ArcPalm, which improves 

he cross-device recognition performance of the model by expand- 

ng the difference between the intra-class and inter-class similar- 

ty. The overall framework of the PTD loss is shown in Fig. 2 . In

his section, we will expand the principle and details of the PTD 

oss. 

.1. From pairwise similarity to histogram 

Pairwise similarity. Let I be an arbitrary input image and F be 

he feature extractor, a convolutional neural network in our case. 

e denote the extracted features as X = F (I) , for simplicity we use

to represent a sample. The similarity between a pair of samples 

 i , X j is defined as their cosine distance in the embedding space: 

 i, j = cos (X i , X j ) = 

X i · X j 

|| X i || · || X j || . 
3 
Positive and negative pairs. Given an arbitrary pair of samples 

 X i , X j 〉 and we denote their identity label as y i , y j . A pair is re-

erred to as the positive pair if y i = y j and otherwise the negative 

air . Given a batch of samples B = { X i , X 2 , . . . , X N } where N is the

atch size, we construct positive pairs and negative pairs according 

o their identity labels: 

 

+ = 

{〈 X i , X j 〉 | ∀ X i , X j,i � = j ∈ B, y i = y j 
}

 

− = 

{〈 X i , X j 〉 | ∀ X i , X j,i � = j ∈ B, y i � = y j 
}
, 

(1) 

here S + and S − are the collections of positive/negative pairs. 

ote that the construction of positive pairs requires the sophisti- 

ated design of the batch sampler because if randomly sampled, 

here may be no positive pairs. More information about the batch 

ampler will be detailed in the experiments. 

Cross-device and within-device pairs. Our proposed loss func- 

ion can be used to improve cross-device palmprint recognition 

y pulling cross-device similarity of positive pairs. To this end, we 

ave to build within-device and cross-device positive pairs. Given 

rbitrary sample X with identity label y , we denote its device as d. 

hen within-device and cross-device positive pairs are defined as: 

 

+ 
� 

= 

{∀〈 X i , X j 〉 ∈ S + , d i = d j 
}

 

+ 
✗ = 

{∀〈 X i , X j 〉 ∈ S + , d i � = d j 
}

 

−
� 

= 

{∀〈 X i , X j 〉 ∈ S −, d i = d j 
}

 

−
✗ = 

{∀〈 X i , X j 〉 ∈ S −, d i � = d j 
}
, 

(2) 

here S � 

represents the collection of within-device pairs and S ✗ 
s the collection of cross-device pairs. 

Construct histograms. Next, we construct the histogram of 

ositive and negative pairs according to their similarities. The or- 

inary discrete histogram is not decomposable and thus cannot be 

sed in the CNN architecture for end-to-end optimization. Usti- 

ova et al. [25] propose the histogram loss that builds decom- 

osable histograms by interpolating between discrete values. Take 

ositive pairs as an example, let H 

+ ∈ R 

R be the histogram with 
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Fig. 3. Left: fixed distributional targets; Right: our proposed progressive targets. Top: Batch 1, Bottom: Batch 2. 
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odes: t 1 = −1 , ..., t R = 1 . Where R is the dimension of the result-

ng histogram and the interval between two nodes is 2 
R −1 . The r-th 

ode of the histogram is: 

 

+ 
r = 

1 

|S + | 
∑ 

〈 X i ,X j 〉∈S + 
δi, j,r . (3) 

here 

i, j,r = 

{ 

(s i j − t r−1 ) / �; if s i j ∈ [ t r−1 , t r ] 
(t r+1 − s i j ) / �; if s i j ∈ [ t r−1 , t r ] 
0 ; othewise. 

(4) 

q. 4 linearly interpolates between two nodes. 

The histogram of negative similarities can be calculated analo- 

ously. We denote the positive/negative histogram as H 

+ , H 

− ∈ R 

R . 

Though the construction of histograms is inspired by [25] , our 

roposed loss function is quite different from [25] : [25] tries to 

hrink the intersection between positive and negative histograms, 

ur proposed method explicitly setup the target distribution for 

stimated histograms. Moreover, we propose progressive targets to 

mooth the ease the optimization. 

.2. Distributional loss with progressive targets 

Distributional losses. After the positive/negative histograms are 

onstructed, we set target distributions for them and then mini- 

ize the distance between histograms and their respective targets 

nder specific metrics, e.g. KullbackLeibler divergence. 

Let T be the target distribution and H be the estimated his- 

ogram. Our method minimizes the divergence between them: 

 

+ 
hist 

= D(H 

+ , T + ) 
 

−
hist 

= D(H 

−, T −) , 
(5) 

here D(·, ·) is a distance metric on discrete distributions. In our 

xperiments, we use KullbackLeibler divergence to measure the 

istributional distances for its simplicity. 

Progressive Targets. Since the batch statistics vary very signif- 

cantly during training, using a fixed target distribution may lead 

o difficulty in optimization and unstable results. As illustrated in 

ig. 3 (a), when the estimated histogram is far away from the fixed 

arget, the intersection of their support sets is nearly empty. Com- 

uting KL divergence under such conditions is an ill-posed prob- 

em. To avoid such a situation and make the training procedure 
4 
mooth, we propose the progressive target in the distribution-based 

oss. 

Fig. 6 presents the similarity distributions of a single device 

ataset, PolyU, and the CrossDevice-A dataset. The similarities 

oughly follow a gaussian distribution. Therefore, we define the tar- 

et histogram as a gaussian distribution with μ and σ differ a lit- 

le bit from the estimated histograms. Specifically, let μ, σ be the 

ean and variance of the estimated histogram, the mean and the 

ariance of its target distribution are given by: 

ˆ = 

{
μ + �μ, if H 

+ 

μ − �μ, if H 

−

ˆ = μ − �σ , 

(6) 

here �μ, �σ are small delta values. 

Examples of the estimated histogram and target distribution 

an be found in Fig. 3 (b)&(d). 

Total loss. In general, the final loss function consists of the pos- 

tive histogram loss pull positive pairs, the negative histogram loss to 

ush negative pairs, and the ArcFace for classification. In addition 

o the aforementioned terms, we add the mean loss to explicitly 

nlarge the average a similar gap between positive/negative pairs: 

 mean = mean (H 

+ ) − mean (H 

−) 

he total loss in our method can be formulated as: 

 = α(L 

+ 
hist 

+ L 

−
hist 

) + βL mean + L ArcF ace , (7) 

here α, β are balance factors. 

The overall pipeline of the proposed method is summarized 

n line 1 . 

. Cross device palm datasets 

To the best of our knowledge, no palm dataset is dedicated to 

ross-device RGB palmprint recognition. Here ‘cross-device’ refers 

o RGB images that are taken by sensors, e.g. digital cameras, mo- 

ile phone, IoT devices et al. To fulfill the blank, we collect two 

ross-device palmprint recognition datasets, namely CrossDevice- 

 and CrossDevice-B, for improving the research of cross-device 

alm recognition. Example images of the newly collected dataset 

nd their respective original datasets are shown in Fig. 4 . 
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Fig. 4. Example images of the four source datasets. Each column represents images of the same identity taken by diverse devices. 

Algorithm 1: Algorithmic outline of the proposed method. 

Input : Model F , initial parameters �, learning rate α. 
while not converged do 

Random select a mini-batch B ; 
Collect sample pairs according to ~Eq. (1) or ~Eq. 
(2); 
Forward pass F (B ) to get features; 
Construct histogram H according to ~Eq. (3); 
Get target distribution according to ~Eq. (6). 
Construct target distribution T using ˆ μ, ˆ σ ; 
Compute loss according to ~Eq. (7) 
Backward to get gradient ��; 
Update � by: � := � − α · ��

end 

Output : �
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Fig. 5. ROI extraction of a left hand. We first detect two key points (green dots) A 

and B and then set up the coordinates where the x -axis is the line across A and B, 

and the y -axis is perpendicular. The ROI is a square on the upper half of y -axis. 

B

d

s

5

5

T

l

i  

s  

i

i  

a

a

a

p

o  

n

f

o

i

m

l

t  
.1. Data collection and annotation 

CrossDevice-A. Images of CrossDevice-A are from MPD [3] and 

CD [26] datasets where the images are taken by mobile and IoT 

evices, respectively. MPD and TCD datasets contain 40 0/60 0 iden- 

ities and 16,0 0 0/12,0 0 0 images, respectively. As part of the identi-

ies present in both TCD and MPD, we construct CrossDevice-A by 

electing intersect identities from TCD and MPD. 

For each identity in MPD, we select top-5 candidate identi- 

ies from TCD by computing the cosine similarity between iden- 

ities. Formally, we define identity-level similarity as the average 

f instance-level similarities: 

( ID 

m 

, ID 

n ) = 

1 

|| ID 

m || · || ID 

n || 
∑ 

i 

∑ 

j 

cos (I m 

i , I 
n 
j ) , 

here ID 

m and ID 

n are two identities and I m 

i 
( I n 

j 
) is the i -th ( j-

h) image in identity ID 

m ( ID 

n ). The instance-level similarity is 

omputed based on features that are extracted using a pretrained 

almprint recognition model. 

After selecting top-5 most-similar identities, we manually ver- 

fy and select the matched identity. The verification and selection 

s performed by two distinct human annotators for the sake of ac- 

uracy. 

CrossDevice-B. Images of CrossDevice-B are from 

OHI [27] and WEHI [27] datasets. Since the original MOHI 

nd WEHI datasets are designated for hand shape recognition, 

herefore, the palmprint is not very clear. Consequently, the 

rossDevice-B dataset is more challenging than CrossDevice-A. The 

onstruction of CrossDevice-B is simpler than that of CrossDevice- 
5 
 since the identities are strictly matched in the two source 

atasets. 

The statistics of the two new datasets and their respective 

ource datasets are summarized in Table 1 . 

. Experiments 

.1. Implementation details 

Training settings. Our method is implemented using the Py- 

orch framework. We first train a base model using the ArcFace 

oss and then finetune with ArcFace + PTD loss. The loss weights 

n PTD loss are set to: α = 2 . 0 , β = 0 . 05 . The deltas in Eq. 6 are

et to �μ = 0 . 07 and �σ = 0 . 05 . We train the model for 26 epochs

n both first-round training and finetune. The initial learning rate 

s set to 5 e −3 and the learning rate decays with a factor of 0.1

t 14, 18, and 24 epochs. We use the stochastic gradient descent 

lgorithm to optimize the model, the movement is set to 0.9 

nd weight-decay is set to 5 e −4 . For more implementation details, 

lease visit https://kaizhao.net/palmprint . 

Datasets. We test our proposed method as well as competitors 

n CASIA [28] , IITD [29] , PolyU [30] , TCD [26] , MPD [3] and our

ewly collected datasets. Unless otherwise stated, we use the 5- 

old cross-validation where 4/5 of images are used for training and 

thers for testing. The statistics of these datasets are summarized 

n Tables 1 and 2 . 

ROI Extraction. Given a palm image, we first detect two land- 

arks and then crop the center area of the palm according to the 

andmarks. Fig. 5 illustrates the landmarks (A and B) and ROI of 

he left hand. As shown in Fig. 5 , we use the intersection of the in-

https://kaizhao.net/palmprint
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Table 1 

Statistics of two newly collected datasets and their respective source datasets. 

New Dataset #IDs #samples Source Dataset #IDs #samples Device 

CrossDevice-A 310 18,600 MPD 400 16,000 Mobile 

TCD 600 12,000 IoT 

CrossDevice-B 200 6,000 MOHI 200 3000 Mobile 

WEHI 200 3000 WebCam 

Fig. 6. (a) Histogram of positive similarities on single device dataset PolyU (b) Histogram of positive similarities on dual device dataset CrossDevice-A. 

Table 2 

Datasets used in our experiments for general palm- 

print recognition. 

Datasets Capture type #images #IDs 

CASIA [28] Contactless 5502 624 

IITD [29] Contactless 2601 460 

PolyU [30] Contactless 1140 114 

TCD [26] Contactless 12,000 600 

MPD [3] Smartphones 16,000 400 
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ex finger and little finger as the first landmark (A), and the inter- 

ection of the ring finger and middle finger as the second landmark 

B). The landmarks are detected with a YOLOv3-based detector. 

Network Architecture. Following the common practice of many 

revious studies [31] , we use the Inception-ResNet (also known as 

nception-v3) network as our backbone. Specifically, we use its 50 

ayer variant for the compromise between efficiency and perfor- 

ance, we will refer to the backbone network as ‘IR50’ for short. 

Besides IR50, we took into account the limitations of computing 

ower and speed requirements in some scenarios and selected Mo- 

ileFaceNet [32] as Backbone to complete a series of experiments. 

n our experiments, MobileFaceNet was abbreviated as ‘MobileNet’. 

We use the state-of-the-art loss function for face recognition, 

rcFace [33] , as the classification loss. 

Evaluation protocol. We evaluate palmprint recognition results 

n terms of EER, TPR@FAR, and top-1 accuracy. When evaluating 

he cross-device setting, we use images of a device as a query and 

mages of other devices as a gallery. 

.2. Results on general palmprint recognition. 

In this section, we evaluated the performance of the baseline 

odels on five public within-device palmprint datasets, and report 

t in Table 3 in detail. For all methods, we conduct 5-fold validation 

nd record the average performance. Since the evaluation protocol 

f original papers vary significantly and almost each paper has its 

valuation protocol, we put the results which strictly follow the 

riginal protocols in the supplementary material. 
6 
According to Table 3 , the Top-1 Accuracy and EER of the base- 

ine on each within-device dataset outperform the state-of-the-art 

ethods. It can also be seen that based on the baseline ArcPalm, 

TD can significantly improve performance. In particular, the Top-1 

ccuracy of the ArcPalm-IR+PTD achieved 100% on IITD, PolyU, and 

CD, and close to 100% on CASIA and MPD. 

.3. Results on cross-device palmprint recognition. 

Here we test our proposed method on the newly collected 

ross-device datasets: CrossDevice-A and CrossDevice-B. 

Experimental settings. In the cross-device setting, we collect 

oth cross-device positive pairs S −✗ and within-device positive 

airs S + � 

, as depicted in Eq. (2) . As illustrated in Fig. 6 (b), the

imilarity histogram of positive similarities on cross-device dataset 

resent dual-peak distribution, this reveals that we can model it 

ith a mixture of Gaussians. 

Based on the above intuition, we set up a target for cross-device 

nd within-device pairs individually. Let S + ✗ and S + � 

be collection 

f cross-detice positive similarities and within-device positive sim- 

larities. We setup two target distributions T + � 

, T + � 

for them. The 

egative similarities S −✗ , S 
−
� 

and their targets T −� 

, T −� 

are defined 

ccordingly. Finally, the L 

+ 
hist 

and L 

−
hist 

in Eq. 5 are broken into two 

arts: 

 

+ 
hist 

= D(H 

+ 
� 

, T + � 

) + D(H 

+ 
✗ , T + ✗ ) 

 

−
hist 

= D(H 

−
� 

, T −� 

) + D(H 

−
✗ , T −✗ ) . 

(8) 

During testing, we use images of one device as the gallery and 

mages of the other device as registry to evaluate the cross-device 

ecognition performance. 

Quantitative evaluations The quantitative evaluation results 

re reported in Table 4 . We compare the proposed method 

ith several recent palmprint recognition methods such as Palm- 

et [34] and ArcPalm [3] using MobileNet [40] and Inception net- 

ork [31] as backbone. 

For CrossDevice-A, the Top-1 Accuracy of ArcPalm-IR50+PTD 

nd ArcPalm-MobileNet+PTD are 0 . 4% and 2 . 15% higher than 

rcPalm-IR50 and ArcPalm-MobileNet, respectively. While 

R50+PTD’s EER and MobileNet’s EER are 0.22 and 0 . 92% lower. 
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Table 3 

Top-1 Accuracy/EER (%) of the proposed method compared to other methods on several general palmprint 

recognition datasets. 

Methods CASIA IITD PolyU TCD MPD 

PalmNet [34] 97.17 / 3.21 97.31 / 3.83 99.95 / 0.39 99.89 / 0.40 91.88 / 6.22 

FERNet [35] 97.65 / 0.73 99.61 / 0.76 99.77 / 0.15 98.63 / - - / - 

DDBC [36] 96.41 / - 96.44 / - - 98.73 / - - / - 

CompCode [13] 79.27 / 1.08 77.79 / 1.39 99.21 / 0.68 - / - - / - 

OLOF [37] 73.32 / 1.75 73.26 / 2.09 99.55 / 0.23 - / - - / - 

DoN [38] 99.30 / 0.53 99.15 / 0.68 100.00 / 0.22 - / - - / - 

C-LMCL [23] - / - - / - 100.00 / 0.13 99.93 / 0.26 - / - 

JCLSR [39] 98.94 / - 98.17 / - - / - - / - - / - 

ArcPalm-IR50 [3] 98.91 / 0.59 99.85 / 0.47 100.00 / 0.08 99.90 / 0.21 99.18 / 0.81 

ArcPalm-IR50 + PTD 99.85 / 0.37 100.00 / 0.20 100.00 / 0.05 100.00 / 0.04 99.78 / 0.43 

Table 4 

Top-1 accuracy and EER (%) of the ArcPalm-based methods un- 

der the cross-device evaluation protocol on CrossDevice-A and 

CrossDevice-B datasets. IR50 and MB indicate the IR50 and 

MobileFaceNet backbones, respectively. 

CrossDevice-A CrossDevice-B 

Methods Top-1 EER Top-1 EER 

PalmNet [34] 84.51 11.60 55.45 34.25 

ArcPalm-MB 96.31 2.17 67.96 14.88 

ArcPalm-MB+PTD 98.46 1.25 69.72 13.39 

ArcPalm-IR50 98.79 1.17 67.63 14.62 

ArcPalm-IR50+PTD 99.19 0.95 71.20 13.50 

Fig. 7. ROC curv on crossPalm-A. 

c  

F

i

c

A

F

c

o

5

o

a

v

d

Table 5 

Top-1 Accuracy (%) and EER (%) of the proposed method on 

cross-dataset recognition. 

Method Training Test Top-1 EER 

C-LMCL [23] TCD PolyU 99.93 0.58 

ArcPalm-IR50 TCD PolyU 98.63 0.83 

ArcPalm-IR50 + PTD TCD PolyU 99.93 0.56 

C-LMCL [23] PolyU TCD 98.72 1.46 

ArcPalm-IR50 PolyU TCD 97.09 1.74 

ArcPalm-IR50 + PTD PolyU TCD 98.74 1.43 

Table 6 

Ablation study of each components in Eq. 7 

on the CrossDevice-A dataset. 

L + 
hist 

L −
hist 

L mean EER Top-1 

✗ ✗ ✗ 96.31 2.17 

✗ ✗ � 96.42 1.99 

� � ✗ 97.79 1.30 

� � � 98.46 1.25 

Table 7 

Aablation study of different tar get settings on CrossDevice- 

A (%). MB means using the MobileFaceNet as backbone. 

Methods Top-1 EER 

ArcPalm-MB 96.31 2.17 

ArcPalm-MB+Within-device Target ∗ 96.75 1.94 

ArcPalm-MB + Fixed Target 97.61 1.79 

ArcPalm-MB+PTD 98.46 1.25 

5

t

m

t

t  

e

m

P

i

f

o  

P

E

f

b

f

p

As for CrossDevice-B, it can be seen that IR50+PTD’s Top-1 Ac- 

uracy is increased by 3 . 57% , and its EER is decreased by 1 . 12% .

or MobileNet+PTD, its Top-1 Accuracy is increased by 1 . 76% , and 

ts EER is decreased by 1 . 49% . 

We drew the ROC curve of the SOTA method PalmNet [34] , Ar- 

Palm [3] -MobileNet, ArcPalm-MobileNet+PTD, ArcPalm-IR50, and 

rcPalm-IR50+PTD on the CrossDevice-A dataset. According to 

ig. 7 , we can see that ArcPalm-X+PTD outperforms SOTA and its 

orresponding baseline model, which proves the effectiveness of 

ur method. 

.4. Results on cross-dataset palmprint recognition 

In this experiment, we test the cross-dataset generalization of 

ur method. The model is trained on one dataset and evaluated on 

nother dataset. 

Results in Table 5 imply that our method show substantial ad- 

antages against the ArcPalm baseline under the challenging cross- 

ataset setting. 
7

.5. Ablation study 

We conduct several ablation experiments to verify the effec- 

iveness of the proposed method and test the robustness of our 

ethod against hyper-parameters. All experiments in this sec- 

ion are conducted on the CrossDevice-A dataset. 

Effectiveness of each component. We first ablate the effec- 

iveness of each component in Eq. 7 . According to Table Table 6 ,

ach of our modules can improve the performance of the baseline 

odel. Not only that, the Top-1 accuracy and EER including the 

TD loss of all modules are the best, indicating that each module 

s an indispensable part of the PTD loss. 

PTD v.s. fixed targets. In the first experiments, we verify the ef- 

ectiveness of the proposed method by comparing the performance 

f PTD and a counterpart with a fixed target. According to Table 7 ,

TD outperforms fixed target in terms of both Top-1 accuracy and 

ER. When using within-device distribution as the target, its per- 

ormance is not as good as the proposed PTD loss. Therefore, we 

elieve that the PTD loss target setting is more reasonable and ef- 

ective. For the fixed target counterpart, we set up a fixed target for 

ositive/negative pairs, respectively. We set μ = 0 . 7 , σ = 0 . 01 for 
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Fig. 8. Performance (EER) of our method with different hyper-parameters. When tuning one hyper-parameter, we fix others to the default value. 

Table 8 

Evaluations (%) of PTD loss on SYSU-MM01 [44] dataset. 

All Search Indoor Search 

Method Rank-1 mAP Rank-1 mAP 

PIG [41] 45.10 25.50 52.70 42.70 

SIM [42] 57.47 53.75 - - 

DDAG [42] 54.75 53.02 61.02 67.98 

AGW [43] 47.50 47.65 54.17 59.81 

AGW+PTD 60.13 57.42 62.51 70.64 

Table 9 

Evaluations (%) of PTD loss on RegDB [46] dataset. 

Visible to Infrared Infrared to Visible 

Method Rank-1 mAP Rank-1 mAP 

PIG [41] 48.50 49.30 48.10 48.90 

SIM [42] 75.29 74.47 78.30 75.24 

DDAG [45] 68.06 61.80 69.34 63.46 

AGW [43] 70.05 66.37 - - 

AGW + PTD 78.73 78.12 79.63 77.84 
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ositive pairs and μ = 0 , σ = 0 . 01 for negative pairs. Results are

n Table 7 . 

PTD under different hyper-parameters . Here we report the 

erformance of PTD under different hyper-parameters, these 

yper-parameters are: loss weights α, β in Eq. 7 and deltas 

μ, �σ in Eq. 6 . When tuning one hyper-parameter, we fix oth- 

rs as the default values. The results in Fig. 8 reveal that our 

ethod is robust against the choice of loss weights α, β and deltas 

μ, �σ . 

.6. Experiments on person re-identification 

Person re-identification (ReID) is a similar task which aims 

o learning discriminative features to identity pedestrians. Re- 

ently, many deep learning based ReID methods have been pro- 

osed [43,47,48] . To further verify the generalization of our pro- 

osed method, we also test our method on cross-device person re- 

dentification. task. We use the AGW [43] as the baseline to verify 

he effectiveness of our method. The experiments on ReID are con- 

ucted on SYSU-MM01 [44] and RegDB [46] datasets. The images 

f SYSU-MM01 dataset are captured by RGB cameras under two 

cenes: indoor and ourdoor. We evaluate both the all-to-all and the 

ndoor-to-outdoor performance. The RegDB is a cross-device and 

ross-modal dataset that the images are captured by RGB (visible) 

nd infrared cameras. We evaluate all-to-all and the infrared-to- 

isible performance on RegDB dataset. The results in Tables 8 and 

 clearly demonstrate that our method consistently improves the 

erformance of a strong baseline with considerable margins. 

. Conclusion and future work 

In this paper, we propsoe a new loss function for cross-device 

almprint recognition. Our contributions are summarized as fol- 
8

ows. We first reorganized a large-scale palm benchmark dataset 

onsists of two subsets. Second, we propose the progressive target 

oss (PTD loss) which progressively narrows the gap between rep- 

esentations of cross-device samples. Extensive experiments have 

emonstrated the superior of our method. The proposed dataset 

ill benefit the research of cross-device palmprint recognition, and 

he proposed method may be also helpful to other biometric recog- 

ition tasks, e.g. face recognition. Though it is effective, our method 

orks in a supervised manner which means the device labels are 

equired during training, which limits its application to unsuper- 

ised conditions where device labels are unavailable. Besides, our 

ethod brings extra computation to estimate the distribution of 

ample similarities. 
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