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Abstract

In natural images, the scales (thickness) of ob-
ject skeletons may dramatically vary among ob-
jects and object parts, making object skeleton de-
tection a challenging problem. We present a new
convolutional neural network (CNN) architecture
by introducing a novel hierarchical feature inte-
gration mechanism, named Hi-Fi, to address the
skeleton detection problem. The proposed CNN-
based approach has a powerful multi-scale feature
integration ability that intrinsically captures high-
level semantics from deeper layers as well as low-
level details from shallower layers. By hierarchi-
cally integrating different CNN feature levels with
bidirectional guidance, our approach (1) enables
mutual refinement across features of different lev-
els, and (2) possesses the strong ability to capture
both rich object context and high-resolution de-
tails. Experimental results show that our method
significantly outperforms the state-of-the-art meth-
ods in terms of effectively fusing features from very
different scales, as evidenced by a considerable
performance improvement on several benchmarks.
Code is available at http://mmcheng.net/hifi.

1 Introduction

Object skeletons are defined as the medial axis of foreground
objects surrounded by closed boundaries [Blum, 1967]. Com-
plementary to object boundaries, skeletons are shape-based
descriptors which provide a compact representation of both
object geometry and topology. Due to its wide applications
in other vision tasks such as shape-based image retrieval
[Demirci et al., 2006; Sebastian et al., 2004], and human
pose estimation [Girshick er al., 2011; Shotton et al., 2013;
Sun et al., 2012]. Skeleton detection is extensively stud-
ied very recently [Shen et al, 2017; Ke et al., 2017;
Tsogkas and Dickinson, 2017].

Because the skeleton scales (thickness) are unknown and
may vary among objects and object parts, skeleton detec-
tion has to deal with a more challenging scale space prob-
lem [Shen et al., 2016b] compared with boundary detection,
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Figure 1: Skeleton detection is facing a more challenging scale space
problem: (a) object boundaries can be detected with filters of similar
size (green boxes); (b) only filters a bit larger than the skeleton scale
(green boxes) can capture proper context for skeleton detection; both
improper big or small (red boxes) cannot perceive skeletons well;
(c) compared with boundary detection and semantic segmentation,
skeleton detection requires inhomogeneous feature levels.

as shown in Fig. 1. Consequently, it requires the detector
to capture broader context for detecting potential large-scale
(thick) skeletons, and also possess the ability to focus on local
details in case of small-scale (thin) skeletons.

Performing multi-level feature fusion has been a primary
trend in pixel-wise dense prediction such as skeleton detec-
tion [Ke et al., 2017] and saliency detection [Zhang et al.,
2017; Hou et al., 2018]. These methods fuse CNN features
of different levels in order to obtain more powerful represen-
tations. The disadvantage of existing feature fusion methods
is that they perform only deep-to-shallow refinement, which
provides shallow layers the ability of perceiving high-level
concepts such as object and image background. Deeper CNN
features in these methods still suffer from low-resolution,
which is a bottleneck to the final detection results.

In this paper we introduce hierarchical feature integration
(Hi-Fi) mechanism with bidirectional guidance. Different
from existing feature fusing solutions, we explicitly enable
both deep-to-shallow and shallow-to-deep refinement to en-
hance shallower features with richer semantics, and enrich
deeper features with higher resolution information. Our ar-
chitecture has two major advantages compared with existing
alternatives:

Bidirectional Mutual Refinement. Different from existing
solutions illustrated in Fig. 2 (a) and Fig. 2 (b) where dif-



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

L ) |

A

—{
{ )

—{ ]

(a) (b)

[ 1]

Hidden Layer

()

Output Layer
© (d)

Figure 2: Different multi-scale CNN feature fusing methods: (a) side-outputs as independent detectors at different scales [Xie and Tu, 2015;
Shen et al., 2016bl; (b) deep-to-shallow refinement [Ke et al., 2017] that brings high-level semantics to lower layers; (c) directly fuse all
feature levels at once; (d) our hierarchical integration architecture, which enables bidirectional mutual refinement across low/high level

features by recursive feature integration.

ferent feature levels work independently or allow only deep-
to-shallow guidance, our method Fig. 2 (d) enables not only
deep-to-shallow but also shallow-to-deep refinement, which
allows the high-level semantics and low-level details to mu-
tually help each other in a bidirectional fashion.

Hierarchical Integration. There are two alternatives for
mutual integration: directly fusing all levels of features as
shown in Fig. 2 (c), or hierarchically integrating them as
shown in Fig. 2 (d). Due to the significant difference between
faraway feature levels, directly fusing all of them might be
very difficult. We take the second approach as inspired by the
philosophy of ResNet [He et al., 2016], which decomposes
the difficult problem into much easier sub-problems: identi-
cal mapping and residual learning. We decompose the fea-
ture integration into easier sub-problems: gradually combin-
ing nearby feature levels. Because optimizing combinations
of close features is more practical and easier to converge due
to their high similarity. The advantage of hierarchical inte-
gration over directly fusing all feature levels is verified in the
experiments (Fig. 9).

2 Related Work

Skeleton Detection. Numerous models have been proposed
for skeleton detection in the past decades. In general, they can
be divided into three categories: (a) early image processing
based methods, these methods localize object skeleton based
on the geometric relationship between object skeletons and
boundaries; (b) learning based methods, by designing hand-
crafted image features, these methods train a machine learn-
ing model to distinguish skeleton pixels from non-skeleton
pixels; (c) recent CNN-based methods which design CNN ar-
chitectures for skeleton detection.

Most of the early image processing based methods [Morse
et al., 1993; Jang and Hong, 2001] rely on the hypothesis
that skeletons lie in the middle of two parallel boundaries.
A boundary response map is first calculated (mostly based
on image gradient), then skeleton pixels can be localized
with the geometric relationship between skeletons and bound-
aries. Some researchers then investigate learning-based mod-
els for skeleton detection. They train a classifier [Tsogkas
and Kokkinos, 2012] or regressor [Sironi ef al., 2014] with
hand-crafted features to determine whether a pixel touches
the skeleton. Boundary response is very sensitive to tex-
ture and illumination changes, therefore image processing
based methods can only deal with images with simple back-
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grounds. Limited by the ability of traditional learning mod-
els and representation capacity of hand-crafted features, they
cannot handle objects with complex shapes and various skele-
ton scales.

More recently many researchers have been exploiting the
powerful convolutional neural networks (CNNs) for skeleton
detection and significant improvements have been achieved
on several benchmarks. HED [Xie and Tu, 2015] introduces
side-output that is branched from intermediate CNN layers
for multi-scale edge detection. FSDS [Shen et al., 2016b]
then extends side-output to be scale-associated side-output,
in order to tackle the scale-unknown problem in skeleton de-
tection. The side-output residual network (SRN) [Ke et al.,
2017] exploits deep-to-shallow residual connections to bring
high-level, rich semantic features to shallower side-outputs
with the purpose of making the shallower side-outputs more
powerful to distinguish real object skeletons from local re-
flective structures.

Multi-Scale Feature Fusing in CNNs. CNNs naturally
learn low/mid/high level features in a shallow to deep layer
fashion. Low-level features focus more on local detailed
structures, while high-level features are rich in conceptual
semantics [Zeiler and Fergus, 2014]. Pixel-wise dense pre-
diction tasks such as skeleton detection, boundary detection
and saliency detection require not only high-level semantics
but also high-resolution predictions. As pooling layers with
strides down-sample the feature maps, deeper CNN features
with richer semantics are always with lower resolution.

Many researchers [Ke et al., 2017; Zhang et al., 2017;
Hou et al., 2018] try to fuse deeper rich semantic CNN fea-
tures with shallower high-resolution features to overcome this
semantic vs resolution conflict. In SRN, Ke et. al. [2017]
connected shallower side-outputs with deeper ones to refine
the shallower side-outputs. As a result, the shallower side-
outputs become much cleaner because they are capable of
suppressing non-object textures and disturbances. Shallower
side-outputs of methods without deep-to-shallow refinement
such as HED [Xie and Tu, 2015] and FSDS [Shen et al.,
2016b] are filled with noises.

A similar strategy has been exploited in DSS [Hou et al.,
2018] and Amulet [Zhang et al., 2017] for saliency detec-
tion, and a schema of these methods with deep-to-shallow
refinement can be summarized as Fig. 2 (b). The problem
of these feature fusion methods is that they lack the shallow-
to-deep refinement, the deeper side-outputs still suffer from
low-resolution. For example, DSS has to empirically drop
the last side-output for its low-resolution.
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Figure 3: Architecture of our proposed Hi-Fi network. All side-
outputs (SOs, marked with rounded square box) are supervised by
skeletons within their receptive fields (numbers on top of SOs indi-
cate their receptive fields). Features of neighbouring feature levels
are integrated to enable mutual refinement, and a lateral feature hier-
archy is obtained with recursively integrating neighbouring features.

3 Hi-Fi: Hierarchical Feature Integration
3.1 Overall Architecture

We implement the proposed Hi-Fi architecture based on the
VGG16 [Simonyan and Zisserman, 2015] network, which
has 13 convolutional layers and 2 fully connected layers.
The conv-layers in VGG network are divided into 5 groups:
convl-x, ..., conv5-x, and there are 2~3 conv-layers in a
group. There are pooling layers with stride = 2 between
neighbouring convolution groups.

In HED, the side-outputs connect only with the last conv-
layer of each group. RCF (Richer Convolution Features) [Liu
et al., 2017] connects a side-output to all layers of a con-
volutional group. We follow this idea to get more powerful
convolutional features. The overall architecture of Hi-Fi is il-
lustrated in Fig. 3, convolutional groups are distinguished by
colors, and pooling layers are omitted.

3.2 Hierarchical Feature Integration

A detailed illustration of the proposed feature integration pro-
cedure is shown in Fig. 4. Feature maps to be integrated are
branched from the primary network stream through a (1 x 1)
convolutional layer (dotted boxes marked with (a)) on top of
an interior convolutional layer. These feature maps are fur-
ther integrated with element-wise sum (box marked with (c)).
The final scale-associated side-output (box marked with (d))
is produced by a (1 x 1) convolution. Note that due to the ex-
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istence of pooling layers, deeper convolutional feature maps
are spatially smaller than shallower ones. Upsampling (box
marked with (b)) is required to guarantee all feature maps to
be integrated are of the same size.

Ideally, the feature integration can be recursively per-
formed until the last integrated feature map contains informa-
tion from all convolution layers (convl-1 ~ conv5-3). How-
ever, limited by the memory of our GPUs and the training
time, we end up with two level integration (Fig. 3 ‘Hi-Fi-2").

(b)
()
-1 1-2 >

L0 14

Figure 4: Illustration of feature integration: (a) feature maps to be
integrated are firstly produced by a (1x1) convolution; (b) deeper
features are upsampled before integration; (c) the integration is im-
plemented by an element-wise sum; (d) side-outputs are built on top
of the integrated features with a (1x 1) convolution.

Bidirectional Refinement. We explain the proposed bidi-
rectional mutual refinement by comparing it with existing ar-
chitectures: FSDS [Shen et al., 2016b] and SRN [Ke et al.,
2017]. As shown in Fig. 5, side-outputs (SOs) of FSDS are
working independently, there is no cross talk between fea-
tures of different levels. As a result, FSDS has noisy shallow
SOs and low-resolution deeper SOs. SRN then introduces
deep-to-shallow refinement by bringing deep features to shal-
low SOs. As shown in Fig. 5, shallower SOs of SRN are
much cleaner than that of FSDS. Despite the improvement,
deeper SOs in SRN are still suffering from low-resolution,
which limits the quality of the final fused result.

In our architecture SOs are built on top of an integration
of nearby feature levels, and the “nearby feature integration”
is recursively performed. In testing phase, SOs will receive
information from both deeper and shallower sides; and in
training phase, gradient from SOs will back-prop to both as
well. In other words, our approach explicitly enables not only
deep-to-shallow but also shallow-to-deep refinement. It is ob-
viously shown in Fig. 5 that Hi-Fi obtains cleaner shallower
SOs than FSDS, and at the same time has much more high-
resolution deeper SOs than SRN. Consequently, we gain a
strong quality improvement in the final fused result.

3.3 Formulation

Here we formulate our approach for skeleton detection.
Skeleton detection can be formulated as a pixel-wise binary
classification problem. Given an input image X = {z;,j =
1,...,|X]}, the goal of skeleton detection is to predict the cor-
responding skeleton map ¥ = {y;.7 = 1,...,|X|}, where
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Figure 5: Illustration of Hi-Fi, FSDS [Shen et al., 2016b] and SRN
[Ke et al., 20171.

y; € {0,1} is the predicted label of pixel z;. 7; = 1 means
pixel x; is predicted as a skeleton point, otherwise, pixel
is the background.

Ground-truth Quantization. Following FSDS [Shen et
al., 2016bl, we supervise the side-outputs with ‘scale-
associated’ skeleton ground-truths. To differentiate and su-
pervise skeletons of different scales, skeletons are quantized
into several classes according to their scales. The skele-
ton scale is defined as the distance between a skeleton point
and its nearest boundary point. Assume S = {s;,j =
1,...,|X|}(s; € R) is the skeleton scale map, where s; rep-
resents the skeleton scale of pixel z;. When z; is the back-
ground, s; = 0. Let Q@ = {¢;,j = 1,...,|X|} be the quan-
tized scale map, where ¢; is the quantized scale of pixel z;.
The quantized scale g; can be obtained by:

m
%=1

where r,,, (m = 1,..., M) is the receptive field of the m-th
side-output (SO-m), with rg = 0, and M is the number of
side-outputs. For instance, pixel x; with scale s; = 39 is
quantized as q; = 3, because 14 = ry < s; < r3 = 40
(receptive fields of side-outputs are shown in Fig. 3 with
numbers-in-boxes). All background pixels (s; = 0) and
skeleton points out of scope of the network (s; > rps) are
quantized as 0.

ifr,_1 <s; <y
iij =0or S5 > TM,

ey
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Supervise the Side-outputs. Scale-associated side-output
is only supervised by the skeleton with scale smaller than its
receptive field. We denote ground-truth as G™ = { 9i", ) =
1,...,|X|}, which is used to supervise SO-m. G™ is modified
from @ with all quantized values larger than m set to zero. g7
can be obtained from @ by:

m __ qj
g9; = { 0
Supervising side-outputs with the quantized skeleton map

turns the original binary classification problem into a multi-
class problem.

ifg; <m
otherwise.

2

Fuse the Side-outputs. Suppose P™ = {p}},;j
1,..,|X|,k = 0,..., K™} is the predicted probability map
of SO-m, in which K™ is the number of quantized classes
SO-m can recognise. pi", means the probability of pixel z;
belonging to a quantized class #k, and index j is over the
spatial dimensions of the input image X. Obviously we have
Zf:o Pik =1

We fuse the probability maps from different side-outputs
P™(m = 1,..., M) with a weighted summation to obtain the
final fused prediction P = {p, 1 }:

Pik = Z Wmk * ka,a (3)

m

where p; ;; is the fused probability that pixel z; belongs to
quantized class #k, w1 is the credibility of side-output m
on quantized class #k. Eq. (3) can be implemented with a
simple (1 x 1) convolution.

Loss Function and Optimization. We simultaneously op-
timize all the side-outputs P™(m = 1,..., M) and the fused
prediction P in an end-to-end way. In HED [2015], Xie and
Tu introduce a class-balancing weight to address the problem
of positive/negative unbalancing in boundary detection. This
problem still exists in skeleton detection because most of the
pixels are background. We use the class-balancing weight to
offset the imbalance between skeletons and the background.
Specifically, we define the balanced softmax loss I( P, G) as:

I(P.G) = Z [ - 5™ kzﬂlog@;’fk)l(gr == k)= .

(1= B™) log(p)1(g)" == 0)],

where P = h(X|O) is the prediction from CNN, G is the
ground-truth, and m is the index of side-outputs. h(X|0©) is
the model hypothesis taking image X as input, parameterized
by ©. g™ = {Zlfjl (9" # 0)} /|X]| is a balancing factor,

where 1(-) is an indicator. The overall loss function can be
expressed as follow:

E(h(X|@), G) = Eside + Efuse

M (5)
= > UP™.G™)+1UP,Q),

m=1

where P™ and G™ are prediction/ground-truth of SO-m re-
spectively, G is the ground-truth of final fused output P.
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All the parameters including the fusing weight w,,; in
Eq. (3) are part of ©. We can obtain the optimal parameters
by a standard stochastic gradient descent (SGD):

(©)* = argmin L. (6)

Detect Skeleton with Pretrained Model. Given trained
parameters ©, the skeleton response map ¥ = {g;,j =
1,...,| X[} is obtained via:

7; =1—pjo, @)

where y; € [0, 1] indicates the probability that pixel z; be-
longs to the skeleton.

4 Experiments and Analysis

In this section, we discuss the implementation details and re-
port the performance of the proposed method on several open
benchmarks.

4.1 Datasets

The experiments are conducted on four popular skele-
ton datasets: WH-SYMMAX [Shen et al., 2016a], SK-
SMALL [Shen er al., 2016bl, SK-LARGE' [Shen et al.,
2017] and SYM-PASCAL [Ke ef al., 2017]. Images of
these datasets are selected from other semantic segmentation
datasets with human annotated object segmentation masks,
and the skeleton ground-truths are extracted from segmenta-
tions. Objects of SK-SMALL and SK-LARGE are cropped
from MSCOCO dataset with ‘well defined’ skeletons , and
there is only one object in each image. SYM-PSCAL selects
images from the PASCAL-VOC2012 dataset without crop-
ping and here may be multiple objects in an image.

Some representative example images and corresponding
skeleton ground-truths of these datasets are shown in Fig. 6.

5 i
1 \‘\.
| B
i
i

(¢) SK-LARGE

e

(a) SYM-PASCAL (b) SK-SMALL

Figure 6: Example images and corresponding skeleton ground-
truths (red curves) of several skeleton datesets.

4.2 Implementation Details

We implement the proposed architecture based on the openly
available caffe [Jia et al, 2014] framework. The hyper-
parameters and corresponding values are: base learning rate

"http://kaiz.xyz/sk-large
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(10~%), mini-batch size (1), momentum (0.9) and maximal it-
eration (40000). We decrease the learning rate every 10,000
iterations with factor 0.1.

We perform the same data augmentation operations with
FSDS for fair comparison. The augmentation operations are:
(1) random resize images (and gt maps) to 3 scales (0.8, 1,
1.2), (2) random left-right flip images (and gt maps); and (3)
random rotate images (and gt maps) to 4 angles (0, 90, 180,
270).

4.3 Evaluation Protocol

The skeleton response map Y is obtained through Eq. (7),
to which a standard non-maximal suppression (NMS) is then
applied to obtain the thinned skeleton map for evaluation. We

evaluate the performance of the thinned skeleton map Y in
terms of F-measure= 2%’% as well as the preci-
sion recall curve (PR-curve) w.r.t ground-truth G. By apply-
ing different thresholds to Y, a series of precision/recall pairs
are obtained to draw the PR-curve. The F-measure is obtained

under the optimal threshold over the whole dataset.

4.4 Skeleton Detection

We test our method on four aforementioned datasets. Ex-
ample images and ground-truths of these datasets are shown
in Fig. 6, some detection results by different approaches are
shown in Fig. 8. Similar to RCF [Liu er al., 2017] we per-
form multi-scale detection by resizing input images to differ-
ent scales (0.5, 1, 1.5) and average their results. We compare
the proposed approach with other competitors including one
learning based method MIL [Tsogkas and Kokkinos, 20121,
and several recent CNN-based methods: FSDS [Shen e al.,
2016bl, SRN [Ke et al., 2017], HED [Xie and Tu, 2015],
RCF [Liu et al., 2017]). FSDS and SRN are specialized skele-
ton detectors, HED and RCF are developed for edge detec-
tion. Quantitative results are shown in Fig. 7 and Tab.1, our
proposed method outperforms the competitors in both terms
of F-measure and PR-curve. Some representative detection
results are shown in Fig. 8.

Comparison results in Tab. 1 reveal that with Ist-level hi-
erarchical integration (Hi-Fi-1), our method (Hi-Fi-1) already
outperforms others with a significant margin. Moreover, by
integrating 1st-level integrated features we obtain the 2nd-
level integration (Hi-Fi-2) and the performance witnesses a
further improvement (Limited by the GPU memory, we didn’t
implement Hi-Fi-3). Architecture details of Hi-Fi-1 and Hi-
Fi-2 are illustrated in Fig. 3.

Methods WH- SK- SK-L SYM-
SYMMAX | SMALL | ARGE | PASCAL
MIL 0.365 0.392 0.293 0.174
HED 0.732 0.542 0.497 0.369
RCF 0.751 0.613 0.626 0.392
FSDS 0.769 0.623 0.633 0.418
SRN 0.780 0.632 0.640 0.443
Hi-Fi 0.805 0.681 0.724 0.454

Table 1: F-measure comparison between different methods on four
popular skeleton datasets. Our proposed Hi-Fi network outperforms
other methods with an evident margin.
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Figure 7: Precision Recall curves of recent CNN-based methods HED [Xie and Tu, 2015], RCF [Liu et al., 2017], FSDS [Shen et al., 2016b],
SRN [Ke et al., 2017] and one learning based method MIL [Tsogkas and Kokkinos, 2012].

Ground-truth FSDS Ours (Hi-Fi)

Figure 8: Representative detection results. Our detected skeletons
are more continuous and finer (thinner) than others.

4.5 Ablation Study
We do ablation study on SK-LARGE dataset to further probe
the proposed method.

Different Feature Integrating Mechanisms. We com-
pare different feature integrating mechanisms including: (1)
FSDS [Shen et al., 2016bl, (2) SRN [Ke et al., 2017] with
deep-to-shallow refinement, (3) Hi-Fi-1 with 1 level hierar-
chical integration ( Fig. 3 (Hi-Fi-1)), and (4) Hi-Fi-2 with 2
level hierarchical integration ( Fig. 3 (Hi-Fi-2)). Results are
shown in Tab. 2.

FSDS SRN Hi-Fi-1 Hi-Fi-2
0.633 0.640 0.703 0.724

Table 2: Performance of different feature integration mechanisms.

Hierarchical Integration versus Direct Fusing. To further
justify the proposed hierarchical feature integration mecha-
nism (Hi-Fi), we compare the proposed Hi-Fi network with
another architecture described in Fig. 2 (c¢), which fuses fea-
tures from all levels together at once.

The comparison results shown in Fig. 9 support our claim
that “learning an integration of nearby feature levels is easier
than learning combination of features of all levels”, as evi-
denced by a faster convergence and better converged perfor-
mance.

Integrating K Feature Levels at Each Step. We also test
models that fuse K (K = 1,2, ...,5) consecutive feature lev-
els at each step, and the results are summarized in Tab. 3.

Convergence Analysis

F-measure

4 5 6 7 8
Iterations (X5000)
Figure 9: Hierarchical Feature Integration (Hi-Fi) versus Direct Fus-
ing (Fig. 2 (¢)).

When K = 1 the model reduces to FSDS where side-outputs
are working independently. K = 2 represents our pro-
posed Hi-Fi (Hi-Fi-1 and Hi-Fi-2) which combines every two
nearby feature levels, and K = 5 is identical to Fig. 2 (c) that
combines all feature levels at once.

K 1 2 3 4 5
F-measure | 0.633 | 0.703 | 0.689 | 0.690 | 0.679

Table 3: Comparison of models that fuse K feature levels at each
step.

Failure Case Exploration. Since our method achieves the
least performance gain on SYM-PASCAL [Ke et al., 2017],
we analysis the failure cases on this dataset. We select top-
5 worst detections (ranked by F-measure w.r.t ground-truths)
shown in Fig. 10. Failure cases on this dataset are mainly

GT

Hi-Fi

SRN §

B
Figure 10: The top-5 worst detections on SYM-PASCAL dataset.
The results are ranked according to F-measure w.r.t ground-truths.

caused by the ambiguous annotations and not-well selected
objects. Our method (and also others) cannot deal with
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‘square-shaped’ objects like monitors and doors whose skele-
tons are hard to define and recognise.

5 Conclusion

We propose a new CNN architecture named Hi-Fi for skele-
ton detection. Our proposed method has two main advan-
tages over existing systems: (a) it enables mutual refinement
with both deep-to-shallow and shallow-to-deep guidance; (b)
it recursively integrates nearby feature levels and supervises
all intermediate integrations, which leads to a faster conver-
gence and better performance. Experimental results on sev-
eral benchmarks demonstrate that our method significantly
outperforms the state-of-the-arts with a clear margin.
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