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Simple Summary: Nonlinear curve fitting of the pharmacokinetic model to DCE-MRI concentration
curves is highly time-consuming. The estimation of highly non-linear dispersion-related parameter
in MR dispersion imaging (MRDI) makes the process even more tedious. The fast MRDI (fMRDI)
model is proposed to simplify and accelerate the MRDI model by representing the dispersion-applied
arterial input function (AIF) as the weighted-sum of a fast and a slow population-based AIFs. A deep
learning-based two-stage inference method is proposed to accelerate quantitative MRDI. The deep
learning model makes a initial estimation of the parameters directly from the concentration curves
and the parameters is then refined by a number of iterative optimization.

Abstract: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures microvas-
cular perfusion by capturing the temporal changes of an MRI contrast agent in a target tissue,
and it provides valuable information for the diagnosis and prognosis of a wide range of tumors.
Quantitative DCE-MRI analysis commonly relies on the nonlinear least square (NLLS) fitting of
a pharmacokinetic (PK) model to concentration curves. However, the voxel-wise application of
such nonlinear curve fitting is highly time-consuming. The arterial input function (AIF) needs to
be utilized in quantitative DCE-MRI analysis. and in practice, a population-based arterial AIF is
often used in PK modeling. The contribution of intravascular dispersion to the measured signal
enhancement is assumed to be negligible. The MR dispersion imaging (MRDI) model was recently
proposed to account for intravascular dispersion, enabling more accurate PK modeling. However,
the complexity of the MRDI hinders its practical usability and makes quantitative PK modeling even
more time-consuming. In this paper, we propose fast MR dispersion imaging (fMRDI) to effectively
represent the intravascular dispersion and highly accelerated PK parameter estimation. We also
propose a deep learning-based, two-stage framework to accelerate PK parameter estimation. We
used a deep neural network (NN) to estimate PK parameters directly from enhancement curves. The
estimation from NN was further refined using several steps of NLLS, which is significantly faster
than performing NLLS from random initializations. A data synthesis module is proposed to generate
synthetic training data for the NN. Two data-processing modules were introduced to improve the
model’s stability against noise and variations. Experiments on our in-house clinical prostate MRI
dataset demonstrated that our method significantly reduces the processing time, produces a better
distinction between normal and clinically significant prostate cancer (csPCa) lesions, and is more
robust against noise than conventional DCE-MRI analysis methods.
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1. Introduction

Tumor development is associated with the growth of new irregular microvessels, a
process known as angiogenesis [1]. The angiogenic microvessels are characterized by leaky
vessel walls and, therefore, a high degree of permeability [2]. Increased microvascular
density and permeability [3,4] have been reported in several studies to correlate with
cancer aggressiveness [5,6]. In the prostate, increased microvascular density and perme-
ability can be characterized by dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) [7–9]. Prostate DCE-MRI acquires a time series of T1-weighted images before,
during, and after the injection of a contrast agent (CA, e.g., gadolinium-based contrast
agents [10]). After the bolus injection, the CA leaks across the vascular wall to the extra-
cellular extravascular space (EES), resulting in MR enhancement uptakes. The temporal
variations in MRI signals provide information about permeability and angiogenesis, which
can be quantified as the leakage from the vessel to EES [2,11]. As illustrated in Figure 1,
there is a noticeable disparity in tissue-concentration curves between clinically significant
prostate cancer (csPCa) and normal prostate tissue. The concentration curve in the tumor
exhibits a significantly faster uptake compared to normal tissue, which could be attributed
to leaky vascular walls in the tumor [1,12].

Quantitative DCE-MRI analysis aims to extract physiological parameters that reflect
the permeability and microvascular density of the underlying tissue. This can be achieved
by fitting a pharmacokinetic (PK) model to time-series concentration curves using nonlinear
least square (NLLS) curve fitting. The standard Tofts model [10] is a widely used PK model
for prostate DCE-MRI. It formulates the tissue concentration, Ct(t), as the convolution of
the plasma concentration (or arterial input function, AIF), Cp(t), and the tissue impulse
response. The tissue-imposed response is characterized by several PK parameters related
to microvascular permeability, such as the forward volume transfer constant, Ktrans, and
the flux rate, kep.
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Figure 1. (a) T2-weighted MR slice with annotated prostate (gray), normal tissue (blue), and a
tumor (red). (b) Corresponding histopathology image. (c) Concentration curves for the three regions
demonstrate different contrast-agent concentrations, Ct(t), in three different ROIs.

The accurate quantification of AIFs is critical to PK modeling [9,13–15]. Either the AIF
can be measured [15,16] or a population-based AIF can be assumed [14,17,18]. Measuring
the AIF necessitates a high temporal resolution [19] and a wide dynamic range [20], which
is not always possible in clinical settings [21]. In practice, a population-based AIF is often
assumed across patients [14,17,18]. In particular, a line of AIF models [14,22,23] has been
proposed to achieve an analytical solution to the convolution in the Tofts model and, there-
fore, simplify the computation. However, the AIF has a significant impact on the estimated
PK parameters [9,16], and location-specific AIFs can improve the estimation [15,16].

Recently, the MR dispersion imaging (MRDI) model [24] has been introduced to char-
acterize the intravascular dispersion of the contrast agent. The quantification of intravas-
cular dispersion inherently yields dispersion-related parameters, which were calculated
by applying voxel-wise dispersion to AIFs within the prostate [8,24,25]. Adopting the
dispersion-applied AIF in PK modeling is considered to improve the model and parameter
estimation precision [8,24–28]. In addition, dispersion-related parameters can be used to
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identify clinically significant prostate cancer (csPCa) [26,29]. The dispersion-related param-
eters, either alone [8,24,26] or combined with other PK parameters [25,28], have been shown
to be indicative of prostate cancer. In Turco’s study [8], dispersion-related parameters were
suggested to outperform other DCE parameters for prostate cancer detection.

The modified MRDI (mMRDI) model [25] simplified the dispersion-applied AIF as a
convolution parameterized by a dispersion-related parameter. mMRDI effectively approxi-
mates the dispersion-applied AIFs with a reduced number of parameters. Additionally,
the dispersion-related parameter in the mMRDI model can be used alongside the volume
transfer constant (Ktrans) for prostate cancer diagnosis [25]. However, mMRDI still requires
an AIF estimation, and the high computation of MRDI and mMRDI limits their practical
usability in prostate DCE-MRI.

Performing voxel-wise curve fitting of the nonlinear PK model can be
time-consuming [30–32], particularly in prostate DCE-MRI, where a large number of voxels
have to be processed in a multi-slice scan. Murase proposed using the simplex method [33]
to efficiently fit the PK model, but this method requires a fixed AIF and low sampling
interval, limiting its practical application. Moreover, the iterative fitting of a nonlinear
PK model is susceptible to noise and initialization [34–37], and improper initializations
could result in suboptimal results. Several workarounds have been used to find proper
initializations [25,35]. Dikaios et al. [35] iteratively searched for the initialization values
until convergence was achieved. Sung [25] repeated the optimization with ten different
initializations and then selected the best results to avoid improper initializations. However,
these workarounds introduced extra computation time.

Recently, a line of studies has demonstrated the advantages of using deep learn-
ing for fast PK parameter estimation [37–39]. Bliesener et al. [37] used deep Bayesian
learning to estimate both PK parameters and uncertainty in longitudinal brain DCE-MRI.
Ottens et al. [38] compared various deep-learning models for PK parameter estimation
in pancreatic cancer detection. Witowski et al. [39] proposed a supervised method that
directly localizes lesions from DCE-MRI data for breast cancer detection. These methods
either rely on a particular AIF [37,38] or annotated data [38,39], making them less flexible.
Directly estimating the parameters of a complicated PK model from noisy DCE-MRI data
is challenging, and the estimations of these methods are less accurate [37,38].

In this paper, we introduce the fast MR dispersion imaging (fMRDI) model, which
further simplifies the MRDI model and simulates the dispersion-applied AIF with the
weighted sum of AIFs of different dispersion levels. An AIF with greater dispersion
exhibits a slow uptake, and an AIF with less dispersion has a fast uptake [25]. Therefore,
fMRDI can effectively account for voxel-wise AIFs with various dispersion levels, yielding
estimates of the intravascular dispersion-related parameter. As shown in Figure 2, the
weighted-sum AIF (Figure 2d) essentially mimics various dispersion levels in MRDI and
mMRDI (Figure 2a,b) in a simple form.

The benefits of fMRDI are twofold. First, it resembles intravascular dispersion in a
simpler form, making it easier to optimize and less computational. Second, as suggested
by [8,24,25], the dispersion parameter λ can be used along with other pharmacokinetic
(PK) parameters to differentiate between csPCa and normal tissue. Experiments on clinical
prostate DCE-MRI data showed that λ improves the overall csPCa detection accuracy
(see Section 3.2).

To accelerate the time-consuming NLLS while maintaining its accuracy, we propose
a deep-learning-based, two-stage framework for PK parameter estimation. In particular,
we used a transformer-based [40] deep neural network to achieve a coarse estimation
of the PK parameters, which serve as the initializations of subsequent NLLS. With the
coarse estimation as the initialization, the subsequent NLLS converges in a few steps,
significantly reducing the iteration steps compared to plain NLLS. Our network is trained
with synthetical DCE-MRI concentration curves. We also designed two data-preprocessing
modules, the time series pyramid, and sinusoidal normalization, to improve the robustness
of our model against the noise in DCE-MRI dynamic images.
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Figure 2. Various dispersion-applied AIFs in MRDI [24] (a) and mMRDI [25] (b) with different
dispersion parameters, κ and λ. Our fMRDI model uses a weighted sum of slow and fast AIFs (c) to
achieve similar AIFs of different dispersion levels (d).

We conducted experiments on our in-house clinical DCE-MRI dataset of 182 patients
who underwent prostate MRI prior to radical prostatectomy. We used linear discriminant
analysis (LDA) to test the precision of csPCa detection using PK parameters from different
methods. Additionally, we experimented with digital reference objects (DROs) to test the
quality and robustness of different fitting methods. The experimental results show that
our fMRDI model produces PK parameters with high contrast between csPCa and normal
tissue. Our method is significantly faster and more robust against noise compared to NLLS.
In summary, our method enjoys the following favorable properties:

1. The fMRDI model resembles intravascular dispersion with a simple linear combination
of slow and fast AIFs, which is easier to optimize and requires less computation.

2. The dispersion parameter in our fMRDI model can be used to differentiate csPCa
from normal tissue and improve the overall performance of csPCa identification
(Section 3.2).

3. The two-stage estimation framework is fast, accurate, flexible, and more robust against
noise and initializations. It does not restrict the form of the AIF or the sampling interval.
It operates significantly faster than NLLS and achieves more accurate fitting results.

The rest of this paper is organized as follows. Section 2.1 briefly reviews the stan-
dard Tofts model, as well as the MRDI and mMRDI models, and then it introduces our
fast MRDI model. Section 2 systematically presents our deep learning-based framework
for PK parameter estimation. Section 2.6 outlines the clinical DCE-MRI data used in our
experiments. Section 3 reports and analyzes the experimental results and makes compar-
isons against other methods. Sections 4 and 5 examine the motivation and background
context of our study, discusses potential limitations and areas for future work, and presents
concluding remarks.

2. Methods and Materials
2.1. From Tofts Model to Fast MRDI Model

We first review the classical Tofts PK model, the modified MRDI model, and our fast
MRDI model.

2.1.1. The Tofts Model

In the classical Tofts model [10], the tissue contrast agent (CA) concentration, denoted
as Ct, is represented by the convolution of the plasma CA concentration, also known as
arterial input function (AIF), denoted as Cp, and the tissue impulse response:

Ct(t) =
∫ t

0
Cp(τ − t0)︸ ︷︷ ︸

AIF

·Ktranse−kep ·(t−τ)︸ ︷︷ ︸
impulse response

dτ, (1)

where t0 is the bolus arrival time. The tissue impulse response, Ktranse−kep ·t, is character-
ized by a few PK parameters, such as the volume-transfer constant (Ktrans, measured in
min−1) and the rate constant (kep, measured in min−1), that are relevant to tissue perfusion
and permeability. Ktrans and kep, which measure the CA wash-in and wash-out, are com-
monly associated with csPCa, as indicated by studies such as those of Fütterer et al. [41],
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Kuenen et al. [24], and Sung et al. [25]. They can enhance lesion visibility, according to the
Prostate Imaging Reporting and Data System (PI-RADS) [7].

The classical Tofts model assumes that the intravascular contribution to the measured
MR signal is negligible, and constant population-averaged AIFs [17,18,20,38,42] are often
used for PK modeling. A recent work [38] assumed an exponential-based AIF obtained
from [42] so that the convolution in Equation (1) could be analytically expressed and the
estimation could be simplified. However, assuming a constant AIF across all patients is not
accurate because AIFs may vary across patients or locations within the same patient.

2.1.2. MRDI and mMRDI: Dispersion-Applied AIFs

The MR dispersion model [24] considered the intravascular dispersion in the prostate
and, therefore, characterized location-specific AIFs within the prostate. In particular, the
dispersion-applied AIF is formulated as follows:

Cp(t)MRDI = α

√
κ

2π(t − t0)
exp

(−κ(t − t0 − µ)2

2(t − t0)

)
(2)

where κ (s−1) is the dispersion parameter, µ is the average transit time from the injection
site to the detection site, and α is the integral of Ct.

In the modified MRDI (mMRDI) model [25], the dispersion-applied AIF is formulated
as the convolution of a vascular transport function:

CmMRDI
p = Cp(t)⊗

1
λ

e−
t
λ (3)

where Cp(t) is a population-based AIF and λ is the dispersion coefficient, (e.g., the larger
the λ, the larger the dispersion). mMRDI characterizes intravascular dispersion with a
simpler formulation and improves practical usability.

However, the convolution in Equation (3) is nonlinear, and the dispersion parameter
λ in the denominator typically makes optimization more challenging. This is because
the denominator introduces nonlinearity and discontinuity, which can complicate and
destabilize the optimization process [43].

To address optimization instability, mMRDI [25] repeatedly performed NLLS with
various initializations and selected the best fit for each voxel. This process can be very
tedious, and it takes hours to process a patient.

2.1.3. fMRDI: Fast MRDI Model

To simplify the formulation and ease the optimization, we propose the fast MRDI
(fMRDI) model, which represents dispersion-applied AIF as the weighted sum of two AIFs
of different dispersion levels.

C̄ f MRDI
p = λC1

p(t − t0) + (1 − λ)C2
p(t − t0), (4)

where C1
p is the ‘fast’ AIF with less dispersion, and C2

p is the ‘slow’ AIF with greater
dispersion. λ ∈ [0, 1] is the intravascular dispersion parameter balancing the summation.
To achieve AIFs of different dispersion levels, we used the dispersion-applied AIF (CMRDI

p

in Equation (2)) with κ = 0.3 s−1, µ = 10 s as the fast AIF (C1
p), and κ = 0.1 s−1, µ = 20 s

as the slow AIF (C2
p). The two bases were selected according to the distribution of the two

parameters in our dataset. Specifically, we calculated µ and κ using the MRDI model on
our dataset, and we chose κ = 0.3 s−1, µ = 10 s and κ = 0.1 s−1, µ = 20 s because more
than 99% of the voxel parameters fell within this range. Figure 2a,b,d demonstrate various
dispersion-applied AIFs in MRDI [24], mMRDI [25], and our fMRDI model. Figure 2c
shows the slow and fast AIFs in fMRDI. Figure 2d shows that the AIFs with various
dispersion factors can be similarly achieved using fMRDI with different λ parameters.
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As per previous studies [8,25], AIFs in csPCa exhibit lower dispersion levels and
faster uptakes, whereas the AIFs of normal tissue have higher dispersion levels and slower
uptakes. Therefore, λ is close to 1 in csPCa and close to 0 in normal tissue. This is verified
by the results in Figures 11, 13 and 14.

With the simplified dispersion-applied AIF, we can derive the fast MRDI model by
substituting Equation (4) for Equation (1):

Ct(t) =
∫ t

0

(
λC1

p + (1 − λ)C2
p

)
︸ ︷︷ ︸

weighted-sum AIF

·Ktranse−kep(t−τ)dτ, (5)

The derivation of Equation (5) is similar to Equation (4) in [8]. The fMRDI model in Equation (5)
provides an assessment of the microvascular architecture using the dispersion parameter λ
and of microvascular permeability using Ktrans and kep.

For simplicity of notation, we will refer to the fast MRDI model as follows:

Ct = fMRDI(P) (6)

where P = {Ktrans, kep, t0, λ} ∈ R4
+ are the PK parameters to be estimated. The PK pa-

rameter estimation from DCE-MRI data is essentially the reverse of Equation (6), which
estimates P from Ct.

We introduce our deep learning-based framework for PK parameter estimation. In
Section 2.2, we introduce our overall pipeline, including training and inference workflows.
Then, we describe how we synthesize data for model training in Section 2.3. Section 2.4
provides a brief description of the model architecture and training procedure. And finally,
we introduce two novel data-preprocessing modules, sinusoidal normalization and time
series pyramid, in Section 2.4.2. The overall workflows are illustrated in Figure 3.

Model Hθ

Train Test
Input

[3 × 1]
P̈ Synth

Data Synth

Eq.7 [75 × 1]
C̈t

Ct

Preproc x
[75 × 80]

[3 × 1]
P̂0

P̂T

P̈
Lp

Eq.8
Refine

Iterative refinement

Loss

Figure 3. The overall workflow of our proposed method for PK parameter estimation. Circles
represent the processed data, and the shape of the data is indicated near each circle. In training, the
random PK parameter P is sampled to synthesize the training data, Ct. After preprocessing, the
data are fed into the neural network, and the estimated parameter P̂0 is compared against P for loss
computation. In testing, the model takes clinical DCE-MRI concentration curves, Ct, as input, and the
subsequent ‘iterative refinement’ takes P̂0 as the starting point of the iteration and refines the initial
estimation with NLLS.

2.2. Overall Workflows

Our overall workflows are illustrated in Figure 3. In general, there are three key
components in our framework: a data synthesis module, the neural network (NN), and
iterative refinement. During training, the data synthesis module synthesizes the training
curves C̈t for the NN. The NN takes the synthetical data C̈t as input and predicts the initial
coarse estimation P̂0, which is then compared against the randomly sampled parameter P̈
that was used for data synthesis. There are two crucial preprocessing modules in the neural
network model that will be described in detail in Section 2.4.2. During inference, the model
takes clinical concentration curves as input and produces the initial estimation of the PK
parameters, P̂0, which is then refined via iterative curve fitting. The final PK parameters
after iterative refinement are denoted as P̂T , where T = 20 is the number of iterations.
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2.3. Training Data Synthesis

Let Ct ∈ RL
+ be the time-series DCE-MRI data, where L is the length of the time

series (L = 75 in our case). Our model learns a mapping from the time series to the
PK parameters:

P = H(Ct)

where H(·) : RL
+ → R4

+ is our model, which learns to reverse Equation (6). To train such a
model, we need the pairwise training datasets {(C1

t , P1), (C2
t , P2), ..., (CN

t , PN)}. Instead of
collecting training datasets from clinical scans, we designed a data synthesis framework to
generate unlimited training data for our neural network. A similar synthesis process was
also used in [38,44] for model training. In general, the data synthesis module is composed
of three steps.

1. Sample random PK parameters Ktrans, kep, t0, and λ from designated distributions.
2. Synthesize smooth time series using the fMRDI formulated in Equation (5).
3. Add Gaussian noise to the smooth time series to close the gap between synthetical

and real data.

The overall pipeline of data synthesis is illustrated in Figure 4, the distributions used
to sample PK parameters are shown in Figure 5, and some examples of synthetical and real
data can be found in Figure 6.

(a) (b) (c)

Random

P
Tofts

Model
⇒ ⇒

Add noise
⇒

Figure 4. The pipeline of concentration-curve synthesis. (a) random PK parameters are sampled to
synthesize smooth curves (b). (c) noise is added to the smooth curves to simulate the real cases.

(1) Sample PK parameters As a statistical model, the predictions from neural networks
are highly related to the statistics of the training data. To mimic the statistics of real DCE-
MRI data, we first analyzed the PK parameters of clinical DCE-MRI cases. Specifically,
we estimated the PK parameters of 20 patients using conventional nonlinear least square
(NLLS) curve fitting and then constructed their histograms. As shown in Figure 5 (top), the
histograms closely resemble specific beta distributions. Then, we used beta distributions,
to sample PK parameters for data synthesis. The beta distributions used for data synthesis
are shown in Figure 5 (bottom). t0 is sampled from a uniform distribution, U(0, 0.1).

(2) Synthesize smooth time series Let Ṗ be the randomly sampled PK parameter from
designated distributions. We synthesized a smooth time series using the fMRDI model
defined in Equation (6). Example smooth curves are demonstrated in Figure 4.

(3) Add Gaussian noise In order to close the gap between real and synthetical time
series, we added random Gaussian noise to the smooth time series. The data synthesis can
be formulated as follows:

C̈t(t) =
⌊

fMRDI(Ṗ)×
(
1 +N (0, γ)

)⌋
, (7)

where N (0, γ) ∈ RL is the Gaussian noise with zero mean, and the standard deviation of
the noise is randomly sampled to achieve synthetical data with a signal-to-noise ratio (SNR)
between 4 and 32. ⌊·⌋ is the rectification operator that rectifies all values less than zero as
zero because the DCE-MRI data are always greater than zero. Example noisy synthetical
curves are demonstrated in Figure 6.
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Figure 6. Real (top) and synthetic concentration curves (bottom). Curves of each column share the
same PK parameters.

2.4. Model Training Workflow
2.4.1. Model Architecture

We utilized the transformer architecture, which is renowned for its outstanding per-
formance using sequential data. We used a three-layer transformer network, and a similar
network has been widely used in computer vision [45] and natural language processing [40].
As shown in Figure 7, the input time-series Ct first passes through preprocessing modules,
which is detailed in Section 2.4.2, after which the position embedding is added. Afterward,
three transformer layers process the high-dimensional inputs, and then a feedforward
network produces the predictions. Rectified linear unit (ReLU) activation is used in the end
to ensure positive predictions. ReLU is an activation function that retains positive input
values while setting negative inputs to zero. The detailed architecture of a transformer
layer is illustrated on the left side of Figure 7.

P̂

Ct

t

Preprocessing

Transformer
Layer ×3

Position
embed

Feedforward

ReLU

Add & Norm

Feedforward

Add & Norm

Multi-head
Attention

[75 × 1]

[75 × 80]

Figure 7. The architecture of the transformer neural network used in our experiments. ReLU
activation was used in the last of the network to ensure positive estimations.
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2.4.2. Preprocessing for Robust Neural Networks

The time-series dynamic images are noisy, unnormalized, and presented as one-dimensional
time series, posing challenges in training deep neural networks. We propose two crucial
data preprocessing modules to stabilize the training process and enhance the model’s
performance. The purposes of the two preprocessing modules are threefold:

1. To enhance the model’s robustness against the noise and capture information at
various scales.

2. To increase the data dimension and project the one-dimensional time series into high-
dimensional space.

3. To normalize the time series data into a fixed range with zero mean and constant variance.

The experimental results in Table 1 demonstrate that the proposed preprocessing
modules improve the estimation accuracy.

Table 1. Squared errors are assessed by incrementally adding model components. The baseline model,
labeled ‘NN + Parker’, represents the NN model without the proposed preprocessing or WS AIF.

NN + Parker AIF 0.6681 ± 2.2015
+WS AIF 0.5982 ± 1.9383
+Pyramid 0.5892 ± 1.9012

+Sinusoidal 0.5801 ± 1.8729
+Refine 0.4114 ± 1.5181

Without a loss of generality, let RL×D be the shape of input to each preprocessing
module, where L is the length of the time series and D is the feature dimension (which
is one for Ct). The preprocessing modules process each row of the input independently
and generate N rows based on a single input row, leading to output data with the shape
of RL×(D·N). N is the scaling factor, which means that the module increases the feature
dimension of the input by a certain factor.

The scaling factor is set to N = 5 in the time series pyramid, and N = 16 is used in
the sinusoidal normalization. In general, the DCE-MRI time series has a shape of L × 1
and will be sequentially processed through the time-series pyramid and the sinusoidal
normalization. The data shape after the time-series pyramid is L × 5, and after sinusoidal
normalization, the shape becomes L × 80.

Time series pyramid Our first preprocessing module is the time series pyramid, which
convolves Ct with kernels of different scales to depress the noise and capture information
at various contextual scales. This operation draws deep inspiration from the seminal
concept of an image pyramid [46] in image processing and computer vision. The image
pyramid provides a flexible and convenient multiresolution format that closely resembles
the multi-scale processing in the human perceptual system.

We construct the time series pyramid, similar to the image pyramid, by convolving
the original time series with Gaussian kernels of different variances (sigmas). Let Kσ be the
Gaussian kernel, where σ is the variance of the kernel, and 2σ + 1 is the kernel size. The
convolved time series is denoted as Cσ

t = Ct ⊗ Kσ. We construct the time series pyramid by
stacking several convolutions. Let N be the number of Gaussian kernels used to construct
the pyramid. For arbitrary input Ct ∈ R+L×D, where L is the length of the time series, and
D is the feature dimension, the dimension of the pyramid would be Ct ∈ R+L×(D×N).

In practice, we used N = 5 different kernels with σ = 0, 2, 4, 8, 10, where σ = 0 corre-
sponds to the original signal. The time series pyramid takes raw DCE-MRI data as input
(with shape L × 1), and the output shape is L × 5. Example pyramids and corresponding
Gaussian kernels can be found in Figure 8.

Sinusoidal normalization Data normalization is critical to deep neural networks.
Normalization techniques rescale input data in a fixed range with zero mean and constant
variance, which accelerates the convergence and improves the performance [47,48] of deep
neural networks.
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Figure 8. The time series pyramid with different σ and respective Gaussian kernels.

In DCE-MRI, the magnitude range exhibits significant variations among time series
from different locations. Additionally, the intensity values are highly biased and follow a
long-tail distribution. We employ simple sinusoidal functions to normalize the input data
into a fixed range of [−1, 1]. To normalize the input data while maintaining an injective
mapping between the input and output, we utilize a series of sinusoidal functions with
different frequencies: [sin(1ω0x), cos(1ω0x), ..., sin(8ω0x), cos(8ω0x)]. where w0 = 2π/100
is the fundamental frequency. The sinusoidal functions project the input into higher-
dimensional spaces and ensure a one-to-one mapping between the input and output. The
signals after the sinusoidal functions fall within a fixed range and possess a zero mean with
constant variance. The input to sinusoidal normalization is the output of the time series
pyramid, which has a shape of L × 5. The output of sinusoidal normalization has a shape
of L × 80.

2.4.3. Model Training

Let Hθ(·) be our model parameterized by θ. Our model is trained with synthetical
data introduced in Section 2.3. Suppose (C̈t, P̈) is the training data pair; the model takes
C̈t as input and predicts P̂0, as shown in Figure 3. Our model is trained by minimizing
the L1 discrepancy between the estimated PK parameter P̂0 and the one used for data
synthesis P̈: L =

∣∣P̂ − P̈
∣∣, where L is the training loss. The loss is computed separately for

each sample (concentration curve) and then averaged across the batch. We use the ADAM
algorithm to optimize the neural network. The model is trained for 100,000 iterations with
a fixed learning rate of 10−4 and a batch size of 256.

2.5. Model Inference Workflow
2.5.1. From MRI Signal to CA Concentration

Before any pharmacokinetic analysis can take place, the CA concentration, Ct, has
to be calculated from the MRI signal enhancement. T1 is reduced from the pre-contrast
value T10 by the presence of CA: 1

T1
= 1

T10
+ r1C, where r1 is the relaxivity, and usually an

in vitro value of 4.5 L × mmol−1 × s−1 is used. The CA concentration Ct can be expressed
as Ct(t) = ( 1

T1(t)
− 1

T10
)/r1, where T10 is the precontrast T1 that can be obtained from the

variable flip-angle method [25,49].

2.5.2. Initial Coarse Estimation

Given the CA concentration curve, Ct(t), the initial estimation of the PK parameters is
made via the neural network: P̂0 = H(Ct).

2.5.3. Coarse-to-Fine via Iterative Fitting

We refine the initial estimation, P̂0, with iterative curve fitting. Specifically, we use the
square of the residual as the objective and iteratively update P̂τ to minimize the discrepancy
between fitting and the observation using gradient descent. The PK parameter P̂τ is updated
based on the following rule:

P̂τ+1 = P̂τ − γ
∂
∣∣fMRDI(P̂τ)− Ct

∣∣2
∂P̂τ

(8)
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where τ is the step index, and γ = 0.01 is the learning rate (or step size). In our experi-
ments, Equation (8) converges significantly faster than starting from scratch. The running
time, starting from the initial estimation and starting from scratch, can be found in Table 2.

Table 2. Squared errors, iterations required to converge, and per-patient times of different fitting
methods and PK models. fMRDI achieves significantly lower errors compared to the Tofts model,
and the two-stage fitting method also outperforms NLLS in both fitting errors and running time.

Fitting Method Ottens NLLS NN + NLLS Refine
PK Model Tofts + Exp Tofts + Parker MRDI fMRDI Tofts + Parker MRDI fMRDI

Error 0.6723
±2.2209

0.6184
±1.9867

0.4272
±1.6618

0.4261
±1.5687

0.5917
±2.1221

0.4175
±1.5212

0.4114
±1.5181

Iterations N/A 200 300 200 20 50 30

Time (per-patient) 109 s 480 s 644 s 480 s 71 s 115 s 176 s

2.6. Study Population and DCE-MRI Data

Our retrospective study was conducted in compliance with the 1996 Health Insurance
Portability and Accountability Act (HIPAA) and approved by the Institutional Review
Board (IRB) of the University of California, Los Angeles, with a waiver of the require-
ment for informed consent. All methods were performed in accordance with the relevant
guidelines and regulations.

The study cohort was derived from patients who underwent 3T mpMRI exams prior to
robotic-assisted radical prostatectomy at a single academic center between December 2010
and July 2019. Patients with prior radiotherapy or partial prostate resection, and those
with technical limitations, were excluded from the study. The complete dataset comprised
182 patients who had whole-mount histopathology (WMHP) conformed with prostate
cancer lesions (PCa). Patient-specific, 3D-printed prostate molds were used to hold the
surgically excised prostate glands in the same orientation observed in vivo MRI.

All imaging, including T2W, DWI, and DCE-MRI, was performed on several 3T MRI
scanners using a pelvic phased-array coil. The DCE-MRI protocol consisted of precontrast
T1(T10) mapping and dynamic imaging. The variable flip angle (VFA) imaging was used
for T10 mapping for the conversion of signal intensity to contrast agent concentration.
With a temporal resolution of 4∼5 s, dynamic 3D images were acquired before, during,
and after a single-dose injection of gadopentetate dimeglumine (Magnevist; Bayer, Wayne,
NJ, USA) at a dose of 0.1 mmol/kg through an eripheral vein at a rate of 2 mL/s via a
mechanical injector. Additionally, 6∼10 precontrast frames (total acquisition time to be
around 24∼50 s), and a total of 75 frames were acquired sequentially without a delay
between acquisitions. The last frame of precontrast acquisitions was located by searching
for the largest gradient concentration curves in the first 15 frames. All concentration values
in precontrast acquisitions were set to zero for ease of optimization. A total of 1500 images
were acquired, and the dimension of the DCE-MRI data was 160 × 160 × 20 × 75, where
160 × 160 is the in-plane resolution, 20 is the number of slices, and 75 is the number
of frames.

Each prostate MRI scan was reviewed by genitourinary (GU) radiologists (10+ years
of clinical prostate MRI reading experience) as part of the standard clinical care, following
the PI- RADS v2.1 guideline. All clinically significant PCa (csPCa) lesions were initially
annotated on T2-weighted MRI, and later, research fellows (K.Z. and K.P.) supervised by an
MRI scientist (K.S. with 15+ years of experience analyzing DCE-MRI) refined the regions of
interest (ROIs) on DCE-MRI using MRI and WMHP as references.

3. Experiments and Results

We compared our method with conventional NLLS and a deep learning-based method [38].
We used the CNN architecture for the baseline deep learning-based method [38] due to its
simplicity and higher performance. For NLLS, we used the trust region-refective algorithm with
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a step tolerance of 10−2, a function tolerance of 10−3, and a minimum gradient change of 0.1.
All implementations were based on the PyTorch framework.

3.1. Running Time and Quality of Fitting
3.1.1. Running Time and Fitting Errors

We first compared the quantitative fitting errors and running time. Let P̂ be the
estimated PK parameter; then, we used Equation (6) to get the fitting curves, Ĉt = MRDI(P̂).
The fitting quality was quantified according to the squared error between the reconstructed
and the original concentration curves: error =

∣∣Ct − Ĉt
∣∣2. We measured the per-patient

processing time on an Intel(R) Xeon(R) W-2123 CPU@3.60GHz CPU. For each iterative
method, we stopped the iteration if the loss reduction was less than 0.5% for five consecutive
iterations. The fitting error, average number of iterations, and running time are summarized
in Table 2.

In Table 2, ‘NLLS’, ‘NN’, and ‘NN + NLLS refine’ denote different curve-fitting meth-
ods, where ‘NN’ denotes the direct estimation of PK parameters with neural networks, and
‘NN + NLLS refine’ denotes our proposed two-stage method that refines the NN estimation
with subsequent NLLS iterations. When starting from scratch, NLLS was performed for
240 iterations. When using ‘NN + NLLS’, we ran 20 iterations.

In general, with the same fitting method, such as NLLS, our fMRDI model significantly
reduced the fitting error compared to the Tofts model with the Parker AIF. Furthermore,
using the same PK model, such as Tofts + Parker, the two-stage ‘NN + NLLS’ fitting method
significantly reduced the running time by a factor of more than four while achieving a
lower fitting error. These results demonstrate the strong efficiency and accuracy of our
method in PK modeling.

The running time and fitting error are summarized in Table 2, and some example
fitting results are in Figure 9.
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Figure 9. Example fitting results of different methods. Methods with Parker AIF do not fit data with
slow uptakes well. fMRDI model achieves the best overall fittings that match the data points the best.

We also tested the fitting error with different components: the fMRDI model, the
NN inference + iterative refinement pipeline, and the two preprocessing modules. The results
in Table 1 clearly demonstrate that each individual component contributes incrementally to
the quality of fitting and plays a role in our method. The results in Table 1 were confirmed
with the paired t-test with p < 0.01 to verify the effectiveness of each component.

3.1.2. Compared with MRDI and mMRDI

We compared the fitting quality of our method with MRDI and mMRDI and evaluated
their robustness. In particular, we fit our fMRDI, MRDI [24], and mMRDI [25] models with
NLLS and various numbers of random initializations. For each model, we repeated NLLS
with different random initializations and then selected the best fitting for each voxel. The
model is considered more stable if it achieves higher performance with fewer repeats.

As shown in Figure 10, fMRDI is more stable and less susceptible to initialization, as it
achieves a lower error with fewer repeats. This is because the linear weighted sum AIF is
much simpler than MRDI and mMRDI, making it easier to optimize. When a saturated
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number of repeats is performed, the three models perform similarly, with MRDI slightly
better than the other two, as MRDI has more free parameters.

1 2 5 10
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or

MRDI

mMRDI

fMRDI

Figure 10. The squared error of fitting with different numbers of repeats. We performed NLLS fitting
various times with random initializations and then picked the best fitting for each voxel.

3.2. csPCa Lesions with Ktrans

We compared PK parametric maps derived from different methods and evaluated
the contrast of PK parameters in csPCa and normal tissue. Both the conventional NLLS
and the baseline deep learning-based method with exponential AIF [38] were included
for comparison. We first visualized different parametric maps and then quantitatively
compared the parameter values in csPCa and normal tissue. Linear discrimination analysis
(LDA) was lastly performed to quantitatively evaluate the discrimination of csPCa from
normal tissue.

Since the volume-transfer constant (Ktrans, min−1) [7] and the dispersion parameter
λ [8,24,25] were considered to be indicative of csPCa, we only visualized Ktrans and λ.

3.2.1. Qualitative Visualization of Ktrans Maps.

Figure 11 displays several exemplary Ktrans maps (1–5 columns), along with corre-
sponding histopathological maps (last column) that indicate the tumor locations. ‘Ours’
represents the fMRDI model with the NN+refine fitting method. Each row represents maps
of the same patient generated using different methods. Since the tumor spans across multi-
ple slices, we visualized the maximum intensity projection (MIP) of two to five consecutive
slices. The specific number of slices in MIP varies among patients. As shown in Figure 11,
our Ktrans maps generally have better contrast in identifying csPCa lesions and are less
noisy than other methods.

3.2.2. Quantitative Comparison of Tissue Contrast

In addition to qualitative visualization, we quantitatively analyzed the contrast be-
tween the csPCa and normal tissue. The quantitative analysis was conducted on the
ROI-averaged parametric maps.

Due to severe misalignment in the prostate tumor delineation between T2W images
and DCE [50], the annotations on T2W could not be propagated to Ktrans. Instead, we
annotated csPCa lesions on Ktrans maps with histopathological images as a reference. As
shown in Figure 12, we first annotated hyperintensity regions as lesions (red ROIs) with
T2W and histopathological images as references. To ensure a fair comparison that did
not favor our method, the ROIs were annotated on Ktrans maps derived from NLLS with
the standard Tofts model and Parker AIF and then propagated to other parameter maps
(e.g., ktrans, kep, and λ maps derived from different methods). In addition to lesions, we
also annotated the corresponding ROI of normal tissue (blue ROIs in Figure 12) in the same
zone (transitional zone or peripheral zone) for contrast analysis. The ROI annotation could
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be biased due to being annotated on Ktrans maps. However, it is not biased toward any
specific DCE-MRI analysis method, ensuring that the comparisons are fair.

After the annotation, ROI-averaged PK parameters are calculated for ROI-wise quanti-
tative evaluations. For each patient, we annotate a representative lesion and a correspond-
ing normal tissue. There are 135 lesions in the peripheral zone (PZ) and 47 lesions in the
transitional zone (TZ).

T2W Ottens (Ktrans) NLLS (Ktrans) Ours (Ktrans) Ours (λ) Histopathology

A
R L

P

A

R
L

P

Figure 11. Visualization of PK parametric maps generated using different methods and the beta Ktrans

maps proposed in our study. The T2-weighted images are used as a background, and corresponding
histopathological images are provided in the right-most column for reference to identify the location
of the lesion.

The scatter plot in Figure 13 depicts the Ktrans and λ values of csPCa and normal tissue
in PZ and TZ. Not unexpectedly, as demonstrated in Figure 13a,b, csPCa ROIs generally
have larger values for both Ktrans and λ. csPCa and normal tissue are more separable when
simultaneously considering Ktrans and λ, as demonstrated in Figure 13c.

T2W Ktrans Histopathology

normal (TZ)

csPCa (TZ)

no
rm
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(P

Z
)
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a
(P

Z
)

Figure 12. Illustration of how we annotated csPCa and normal tissue ROIs on Ktrans maps. Using the
T2W annotations and the histopathological images as references, we annotated hyperintensity areas
on Ktrans maps as lesions, and then we annotated normal tissue in the same zone on the Ktrans maps.
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We applied the linear discriminant analysis (LDA) to quantitatively analyze the dis-
crimination of csPCa from normal tissue in PZ and TZ. The ROI-averaged PK parameters
(Ktrans, kep, t0, and λ) values derived from different methods were used for the classification
of csPCa from normal tissue. The performance of each DCE-MRI analysis model was
evaluated using 5-fold cross-validation, and the average results are reported. Sensitiv-
ity and specificity values were calculated from the cut-off points on the ROC curves by
maximizing Youden’s index. The specificity-0sensitivity curves are shown in Figure 14,
and the specificity, sensitivity, and AUC values are summarized in Table 3. In particular,
in Figure 14, for ‘NLLS’, we employed the Tofts model with Ktrans, kep, t0 as the input to the
LDA model. For ‘Ours’, we used our fMRDI model and Ktrans, kep, t0 as the input. And for
‘Ours (with λ)’, we used the fMRDI model with Ktrans, kep, t0, and λ as the input.
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Figure 13. Scatter plot of ROI-averaged Ktrans and λ values in TZ and PZ. When applied individually,
both λ (a) and Ktrans (b) can differentiate csPCa lesions from normal tissue, while Ktrans performs
better. When applied jointly (c), the lesions and normal tissue can be better separated.
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Figure 14. Specificity–sensitivity curves of csPCa detection in the peripheral zone (PZ), the transitional
zone (TZ), and the whole prostate (PZ+TZ). Different colors represent different pharmacokinetic
models. ‘Ours’ represents the fMRDI model with NN + refine curve fitting.

Table 3. Sensitivity, specificity, and AUC values of different methods in the PZ, the TZ, and the whole
prostate. The sensitivity and specificity values are calculated by maximizing Youden’s index.

Method Ottens [38] NLLS+Tofts+Parker MRDI fMRDI (Ours)
Zone PZ TZ PZ+TZ PZ TZ PZ+TZ PZ TZ PZ+TZ PZ TZ PZ+TZ

AUC 0.784 0.754 0.753 0.852 0.826 0.830 0.934 0.823 0.892 0.939 0.871 0.904
1 - specificity 0.236 0.288 0.179 0.109 0.152 0.183 0.109 0.227 0.204 0.069 0.167 0.167

Sensitivity 0.690 0.773 0.583 0.730 0.697 0.742 0.862 0.788 0.858 0.822 0.788 0.842

The results in Figure 14 and Table 3 demonstrate the following: (1) using the same
PK parameters, our fMRDI model (‘Ours’) improves the csPCa detection performance
compared to Ottens and NLLS. (2) the detection performance is further improved by using
λ as additional input (‘Ours (with λ)’). The AUCs in Table 3 were compared via DeLong’s
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test with a 95% confidence interval, and the specificity and sensitivity were compared via
the Chi-squared test (p < 0.05).

Figure 15 demonstrates the ROCs of different combinations of PK parameters. When
applied individually, Ktrans performed the best, followed by λ and kep. And t0 can barely dif-
ferentiate csPCa from normal tissue. When applied individually, the inclusion of λ noticeably
improved the performance.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

(a)

Ktrans

kep

β

t0

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

(b)

Ktrans + kep + β + t0

Ktrans + kep + β

Ktrans + kep

Ktrans

Figure 15. ROC curves from LDA analysis were generated for the entire prostate (PZ + TZ) using
various combinations of PK parameters. (a) When analyzed individually, Ktrans exhibited the highest
performance, followed by λ and then kep. Conversely, t0 demonstrated the lowest performance and
could only differentiate lesions from normal tissue to a limited extent. (b) When analyzed collec-
tively, excluding t0 barely impacted the performance, and the inclusion of λ moderately improved
the performance.

3.3. Validation with Digital Reference Objects

Our two-phase inference pipeline is more resilient to noise because the neural net-
work provides a stable initial state for subsequent iterative refinement. In this exper-
iment, we tested the robustness of different methods against data noise using digital
reference objects (DROs). The DROs are synthetical input data that are generated simi-
larly to our training data using Equation (7) with two exceptions: (1) we used the plain
Tofts model without λ for DRO synthesis for a fair comparison; (2) the parameters Ktrans

and kep were sampled from uniform distributions U(0, 0.4) and U(0, 2) to cover a wider
range of possible inputs. The noise level of DROs was controlled via γ in Equation (7),
whereas a larger γ indicates a higher level of noise. We synthesized 100K DROs that
are grouped into 100 = 10 × 10 discrete bins according to their Ktrans and kep values. Let
P̂ ∈ R2 = { ˆKtrans, ˆkep} be the estimated parameter and P be the ‘ground-truth’, which was
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used to synthesize the corresponding DRO; the estimation error is calculated as follows:

error = |P̂−P|2
|P|2 . We compared the fitting error of NLLS and our method under different

noise levels in Figure 16. For example, the first bin comprises 1000 DROs with Ktrans

ranging from 0 to 0.1 and kep ranging from 0 to 0.2.
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Figure 16. The fitting error of different methods under different noise levels using DROs. The heat
maps show fitting errors at different Ktrans and kep bins. The table summarizes the average errors at
different noise levels.

In the heat maps of Figure 16, we calculated the average estimation error within each
bin. We conducted the paired sample t-test to verify that our method achieves lower fitting
errors. And the p-values (p < 0.001) confirmed the significance of our hypothesis. In general,
the fitting errors surge with a higher level of noise. Under the same noise level, the fitting
errors increase with the raising of Ktrans and kep. Our approach consistently provides more
accurate results by reducing estimation errors, especially when dealing with higher levels of
noise. This showcases the robustness and superiority of our method in handling noisy data.

4. Discussion

This study introduced the fast MRDI model and a deep learning-based, two-stage
framework for efficient prostate DCE-MRI analysis. Existing quantitative DCE-MRI analysis
methods rely on the time-consuming, iterative optimization of a pharmacokinetic (PK)
model, e.g., the Tofts model [10]. PK modeling requires the characterization of arterial
input functions (AIFs), and a population-based AIF is often assumed across patients.
MR dispersion imaging (MRDI) [24] characterizes the intravascular dispersion of the
contrast agent, yielding voxel-specific AIFs with various dispersion levels. The mMRDI [25]
approximates the dispersion-applied AIFs with fewer dispersion-related parameters. The
formulation of these models is highly nonlinear and poses difficulty in optimization.

In this study, we first introduced the fast MR dispersion imaging (fMRDI) model
that simulates the dispersion-applied AIFs using a weighted sum of a slow and a fast
AIF and that effectively forms location-specific AIFs with various dispersion levels, yield-
ing estimates of the intravascular dispersion-related parameter λ. fMRDI is much sim-
pler and easier to optimize compared to MRDI and mMRDI. Additionally, we proposed
a deep-learning-based, two-stage framework for PK parameter estimation. We used a
transformer-based neural network (NN) to perform a coarse estimation of the PK pa-
rameters, and then we used iterative NLLS to further refine the coarse estimation. The
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NN estimation essentially serves as an initialization for the subsequent NLLS, and our
two-stage framework significantly speeds up and enhances the accuracy of PK modeling.
A data-synthesis module was designed to generate synthetic data for neural network
training. Two data-preprocessing modules were proposed to enhance the stability of the
neural network.

Experimental results on our in-house clinical prostate MRI dataset demonstrated
that the fMRDI model improves the fitting accuracy, and the dispersion parameter λ is
able to improve the differentiation of csPCa from normal tissue. Our two-stage, deep
learning-based method significantly accelerates the quantitative DCE-MRI analysis with
more stable estimation.

There were several limitations in the current study. In the quantitative contrast
analysis, the regions of interest (ROIs) were annotated on pharmacokinetic (PK) maps
instead of being propagated from T2, potentially introducing bias in ROI annotation. Our
data acquisition protocol did not include the first pass of the bolus, and the acquisition
time was relatively short, which may not have been enough to measure the extra-vascular
extracellular space, ve. This poses challenges in extending our method to other organs,
e.g., the liver. Future work will include employing advanced techniques such as neural
differentiation equations for continuous-time DCE analysis, as well as extending and
applying the proposed computational method to other DCE applications.

5. Conclusions

In conclusion, this study has made two contributions to improve prostate MR dis-
persion imaging: (i) Introducing the fMRDI model, which efficiently represents AIFs of
different dispersion levels using a weighted-sum AIF. (ii) Developing a deep learning-based,
two-stage method for estimating PK parameters. We believe the proposed techniques will
improve the practical utility of DCE-MRI in oncological applications.
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